Vol. 78

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-01-31

Solution of Wideband Scattering Problems Using Hierarchical Ultra-Wideband Characteristic Basis Functions

By Wen-Yan Nie and Zhong-Gen Wang
Progress In Electromagnetics Research M, Vol. 78, 125-133, 2019
doi:10.2528/PIERM18121802

Abstract

In this paper, a hierarchical ultra-wideband characteristic basis function method (HUCBFM) is presented for high-precision analysis of wideband scattering problems. Unlike existing improved ultra-wideband characteristics basis function method (IUCBFM), HUCBFM reduces the number of characteristic basis functions (CBFs) necessary to express a current distribution. This reduction is achieved by combining primary CBFs (PCBFs) with the secondary level CBFs (SCBFs) to form a single hierarchical ultra-wideband characteristic basis function (HUCBF). As HUCBF incorporates the effects of PCBFs and SCBFs, the accuracy does not change significantly compared to that obtained by IUCBFM. Furthermore, the efficiencies of constructing the CBFs and filling the reduced matrix are improved. Numerical examples verify and demonstrate that the proposed method is credible both in terms of accuracy and efficiency.

Citation


Wen-Yan Nie and Zhong-Gen Wang, "Solution of Wideband Scattering Problems Using Hierarchical Ultra-Wideband Characteristic Basis Functions," Progress In Electromagnetics Research M, Vol. 78, 125-133, 2019.
doi:10.2528/PIERM18121802
http://www.jpier.org/PIERM/pier.php?paper=18121802

References


    1. Harrington, R. F., Field Computation by Method of Moments, IEEE Press, New York, 1992.

    2. Coifman, R., V. Rokhlin, and S. Wandzura, "The fast multipole method for the wave equation: A pedestrian prescription," IEEE Ant. Propag. Mag., Vol. 53, No. 3, 7-12, 1993.
    doi:10.1109/74.250128

    3. Song, J. M., C. C. Lu, and W. C. Chew, "Multilevel fast multipole algorithm for electromagnetic scattering by large complex objects," IEEE Trans. Antennas Propag., Vol. 45, No. 10, 1488-1493, 1997.
    doi:10.1109/8.633855

    4. Bleszynski, E., M. Bleszynski, and T. Jaroszewicz, "Adaptive integral method for solving large-scale electromagnetic scattering and radiation problems," Radio Sci., Vol. 31, No. 5, 1225-1251, 1996.
    doi:10.1029/96RS02504

    5. Burke, G. J., "Using model based parameter estimation to increase the efficiency of computing electromagnetic transfer functions," IEEE Trans. Mag., Vol. 25, No. 4, 2807-2809, 1988.
    doi:10.1109/20.34291

    6. Newman, E. H., "Generation of wide band from the method of moments by interpolating the impedance matrix," IEEE Trans. Antennas Propag., Vol. 36, No. 12, 1820-1824, 1988.
    doi:10.1109/8.14404

    7. Chao, T., Y. J. Xie, and Y. Y. Wang, "Fast solutions of wide-band RCS pattern of objects using MLFMM with the best uniform approximation," Journal of Electronics & Information Technology, Vol. 31, No. 11, 2772-2775, 2009.

    8. Reddy, C. J., M. D. Deshpande, and C. R. Cockrell, "Fast RCS computation over a frequency band using method of moments in conjunction with asymptotic evaluation technique," IEEE Trans. Antennas Propag., Vol. 46, No. 8, 1229-1233, 1998.
    doi:10.1109/8.718579

    9. Wang, X., S. X. Gong, and J. L. Guo, "Fast and accurate wide-band analysis of antennas mounted on conducting platform using AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propag., Vol. 59, No. 12, 4624-4633, 2011.
    doi:10.1109/TAP.2011.2165495

    10. Nie, X. C., N. Yuan, L. W. Li, and Y. B. Gan, "Fast analysis of RCS over a frequency band using pre-corrected FFT/AIM and asymptotic waveform evaluation technique," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3526-3533, 2008.
    doi:10.1109/TAP.2008.2005455

    11. Prakash, V. V. S. and R. Mittra, "Characteristic basis function method: A new technique for efficient solution of method of moments matrix equations," Microw. Opt. Technol. Lett., Vol. 36, No. 2, 95-100, 2003.
    doi:10.1002/mop.10685

    12. Degiorgi, M., G. Tiberi, and A. Monorchio, "An SVD-based method for analyzing electromagnetic scattering from plates and faceted bodies using physical optics bases," IEEE Antennas and Propagation Society International Symposium, 147-150, Jul. 2005.

    13. Tanaka, T., Y. Inasawa, Y. Nishioka, and H. Miyashita, "Improved primary characteristic basic function method for monostatic radar cross section analysis of specific coordinate plane," IEICE Transactions on Electronics, Vol. E99-C, No. 1, 28-35, 2016.
    doi:10.1587/transele.E99.C.28

    14. Tanaka, T., Y. Inasawa, Y. Nishioka, and H. Miyashita, "Improved primary-characteristic basis function method considering higher-order multiple scattering," IEICE Transactions on Electronics, Vol. E100-C, No. 1, 45-51, 2017.
    doi:10.1587/transele.E100.C.45

    15. Tanaka, T., Y. Inasawa, Y. Nishioka, and H. Miyashita, "Accuracy improvement of characteristic basis function method by using multilevel approach," IEICE Transactions on Electronics, Vol. E101-C, No. 2, 96-103, 2018.
    doi:10.1587/transele.E101.C.96

    16. Li, C. L., Y. F. Sun, and G. H. Wang, "Merged characteristic basis function method for analysis of electromagnetic scattering characteristics from conducting targets," Progress In Electromagnetics Research Letters, Vol. 69, 15-21, 2017.
    doi:10.2528/PIERL17031501

    17. Maaskant, R., R. Mittra, and A. G. Tijhuis, "Fast analysis of large antenna arrays using the characteristic basis function method and the adaptive cross approximation algorithm," IEEE Trans. Antennas Propag., Vol. 56, No. 11, 3440-3451, 2008.
    doi:10.1109/TAP.2008.2005471

    18. Wang, X., D. H. Werner, and J. P. Turpin, "Investigation of scattering properties of large-scale aperiodic tilings using a combination of the characteristic basis function and adaptive integral methods," IEEE Trans. Antennas Propag., Vol. 61, No. 6, 3149-3160, 2013.
    doi:10.1109/TAP.2013.2250474

    19. Degiorgi, M., G. Tiberi, and A. Monorchio, "Solution of wide band scattering problems using the characteristic basis function method," IET Microwaves Antennas and Propagation, Vol. 6, No. 1, 60-66, 2012.
    doi:10.1049/iet-map.2011.0309

    20. Nie, W. Y. and Z. G. Wang, "Solution for wide band scattering problems by using the improved ultra-wide band characteristic basis function method," Progress In Electromagnetics Research Letters, Vol. 58, 37-43, 2016.
    doi:10.2528/PIERL15080801

    21. Nie, W. Y. and Z. G. Wang, "Analysis of wide band scattering from objects using the adaptive improved ultra-wide band characteristic basis functions," Progress In Electromagnetics Research Letters, Vol. 60, 45-51, 2016.
    doi:10.2528/PIERL16033003

    22. Koc, S. N. and A. Köksal, "Wideband analysis of planar scalable antennas and PEC bodies using CBFM," Turkish Journal of Electrical Engineering & Computer Sciences, Vol. 24, 1652-1662, 2016.
    doi:10.3906/elk-1401-48

    23. Nie, W. Y. and Z. G. Wang, "Efficient computation of wideband RCS using singular value decomposition enhanced improved ultrawideband characteristic basis function method," International Journal of Antennas and Propagation, Vol. 2016, Article ID 6367205, 1–6, 2016.

    24. Yeo, J., S. Köksoy, V. V. S. Prakash, and R. Mittra, "Efficient generation of method of moments matrices using the characteristic function method," IEEE Trans. Antennas Propag., Vol. 52, No. 12, 3405-3410, 2004.
    doi:10.1109/TAP.2004.836418