Vol. 78

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-02-11

Compact Wideband Quad-Element MIMO Antenna with Reversed S-Shaped Walls

By Fei Wang, Shifeng Li, Qing Zhou, and Yu-Bin Gong
Progress In Electromagnetics Research M, Vol. 78, 193-201, 2019
doi:10.2528/PIERM19010201

Abstract

We propose a compact wideband planar quad-element multiple input, multiple output (MIMO) antenna, which can cover a wide bandwidth ranging from 2.2 to 30 GHz. Novel reversed S-shaped walls provide high isolation between antenna elements within an extremely closed space, with the edge-to-edge distance between elements being only 1 mm. The simulated and measured results with respect to S parameters and radiation patterns are in good agreement. The experimental results indicate that the quad-element MIMO antenna can provide wide bandwidth (2.2-30 GHz), high isolation (with the transmission coefficients below -19 dB), and low profile (only ~λ0/40) within a compact structure (32 mm ×32 mm×4.5 mm). This compact wideband quad-element MIMO antenna with high isolation and low profile has important applications in mobile devices or other small-scaled equipment in future 5G communication.

Citation


Fei Wang, Shifeng Li, Qing Zhou, and Yu-Bin Gong, "Compact Wideband Quad-Element MIMO Antenna with Reversed S-Shaped Walls," Progress In Electromagnetics Research M, Vol. 78, 193-201, 2019.
doi:10.2528/PIERM19010201
http://www.jpier.org/PIERM/pier.php?paper=19010201

References


    1. Niu, Y., Y. Li, D. Jin, L. Su, and A. V. Vasilakos, "A survey of millimeter wave (mm Wave) communications for 5G: Opportunities and challenges," Wireless Networks, Vol. 21, No. 8, 2657-2676, Nov. 2015.
    doi:10.1007/s11276-015-0942-z

    2., "Microwave towards 2020: Delivering high-capacity and cost-efficient backhaul for broadband networks today and in the future,", Ericsson, Sep. 2015.
    doi:10.1007/s11276-015-0942-z

    3. Rappaport, T. S., et al., "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE Access, Vol. 1, 335-349, May 2013.
    doi:10.1109/ACCESS.2013.2260813

    4. Roh, W., et al., "Millimeter-wave beamforming as an enabling technology for 5G cellular communications: Theoretical feasibility and prototype results," IEEE Communications Magazine, Vol. 52, No. 2, 106-113, Feb. 2014.
    doi:10.1109/MCOM.2014.6736750

    5. Rappaport, T. S., et al., "Overview of millimeter wave communications for Fifth-Generation (5G) wireless networks-with a focus on propagation models," IEEE Trans. Antennas Propag., Aug. 2017.

    6. Park, J. S., et al., "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wireless Propag. Lett., Vol. 15, 1685-1688, Jan. 2016.
    doi:10.1109/LAWP.2016.2523514

    7. Li, M., et al., "Eight-port orthogonally dual-polarized antenna array for 5G smartphone applications," IEEE Trans. Antennas Propag., Vol. 64, No. 9, 3820-3830, Sep. 2016.
    doi:10.1109/TAP.2016.2583501

    8. Ge, L., et al., "Polarization-reconfigurable magnetoelectric dipole antenna for 5G Wi-Fi," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1504-1507, Jan. 2017.
    doi:10.1109/LAWP.2016.2647228

    9. Dadgarpour, A., et al., "Mutual coupling reduction in dielectric resonator antennas using metasurface shield for 60-GHz MIMO systems," IEEE Antennas Wireless Propag. Lett., Vol. 16, 477-480, Mar. 2017.
    doi:10.1109/LAWP.2016.2585127

    10. Farahani, M., et al., "Mutual coupling reduction in millimeter-wave MIMO antenna array using a metamaterialpolarization-rotator wall," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2324-2327, Aug. 2017.
    doi:10.1109/LAWP.2017.2717404

    11. Mao, C. and Q. Chu, "Compact coradiator UWB-MIMO antenna with dual polarization," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4474-4480, Sep. 2014.
    doi:10.1109/TAP.2014.2333066

    12. Zhu, J., S. Li, B. Feng, L. Deng, and S. Yin, "Compact dual-polarized UWB quasi-self-complementary MIMO/diversity antenna with band-rejection capability," IEEE Antennas Wireless Propag. Lett., Vol. 15, 905-908, Sep. 2015.

    13. Gopikrishna, M., D. D. Krishna, C. K. Anandan, P. Mohanan, and K. Vasudevan, "Design of a compact semi-elliptic monopole slot antenna for UWB systems," IEEE Trans. Antennas Propag., Vol. 57, No. 6, 1834-1837, Jun. 2009.
    doi:10.1109/TAP.2009.2015850

    14. Rajesh, D., P. K. Sahu, and S. K. Behera, "A compact UWB parasitic microstrip antenna with band dispensation," 2011 Int. Conf. Devices Commun., 1-5, Mesra, India, Feb. 2011.

    15. Yu, C., W. Hong, L. Chiu, G. Zhai, C. Yu, W. Qin, and Z. Kuai, "Ultrawideband printed log-periodic dipole antenna with multiple notched bands," IEEE Trans. Antennas Propag., Vol. 59, No. 3, 725-732, Dec. 2010.
    doi:10.1109/TAP.2010.2103010

    16. Jahromi, M. N., "Novel wideband planar fractal monopole antenna," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3844-3849, Dec. 2008.
    doi:10.1109/TAP.2008.2007393

    17. Rahman, M. U., D.-S. Ko, and J.-D. Park, "A compact multiple notched ultra-wide band antenna with an analysis of the CSRR-TO-CSRR coupling for portable UWB applications," Sensors, Vol. 17, No. 10, 2174, 2018.
    doi:10.3390/s17102174

    18. Rahman, M. U., W. T. Khan, and M. Imran, "Penta-notched UWB antenna with sharp frequency edge selectivity using combination of SRR, CSRR, and DGS," Int. J. Electron. Commun., Vol. 93, 116-122, Jun. 2018.
    doi:10.1016/j.aeue.2018.06.010

    19. Zhao, X., S. P. Yeo, and L. C. Ong, "Planar UWB MIMO antenna with pattern diversity and isolation improvement for mobile platform based on the theory of characteristic modes," IEEE Trans. Antennas Propag., Vol. 66, No. 1, 420-425, Jan. 2018.
    doi:10.1109/TAP.2017.2768083

    20. Zhao, X., S. P. Yeo, and L. C. Ong, "Decoupling of inverted-F antennas with high-order modes of ground plane for 5G mobile MIMO platform," IEEE Trans. Antennas Propag., Vol. 66, No. 9, 4485-4495, Sep. 2018.
    doi:10.1109/TAP.2018.2851381

    21. Li, W., Y. Hei, P. M. Grubb, X. Shi, and R. T. Chen, "Compact inkjet-printed flexible MIMO antenna for UWB applications," IEEE Access, Vol. 6, 50290-50298, Sep. 2018.
    doi:10.1109/ACCESS.2018.2868707

    22. Iqbal, A., O. A. Saraereh, A. W. Ahmad, and S. Bashir, "Mutual coupling reduction using F-shaped stubs in UWB-MIMO antenna," IEEE Access, Vol. 6, 2755-2759, Feb. 2018.
    doi:10.1109/ACCESS.2017.2785232

    23. Saad, A. A. R., "Approach for improving inter-element isolation of orthogonally polarised MIMO slot antenna over ultra-wide bandwidth," Electro. Lett., Vol. 54, No. 18, 1062-1064, Sep. 2018.
    doi:10.1049/el.2018.5346

    24. Sarkar, D. and K. V. Srivastava, "A compact four-element MIMO/diversity antenna with enhanced bandwidth," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2469-2472, May 2017.
    doi:10.1109/LAWP.2017.2724439

    25. Anitha, R., P. V. Vinesh, K. C. Prakash, P. Mohanan, and K. Vasudevan, "A compact quad element slotted ground wideband antenna for MIMO applications," IEEE Trans. Antennas Propag., Vol. 64, No. 10, 4550-4553, Jul. 2016.
    doi:10.1109/TAP.2016.2593932

    26. Hallbjörner, P., "The significance of radiation efficiencies when using S parameters to calculate the received signal correlation from two antennas," IEEE Antennas Wireless Propag. Lett., Vol. 4, 97-99, Jun. 2005.
    doi:10.1109/LAWP.2005.845913

    27. Chae, S. H., S. Oh, and S.-O. Park, "Analysis of mutual coupling, correlations, and TARC in WiBro MIMO array antenna," IEEE Antennas Wireless Propag. Lett., Vol. 6, 122-125, Feb. 2007.
    doi:10.1109/LAWP.2007.893109