Vol. 82
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-04
Defect Mode Tuning in Two-Dimensional Band-Gap Wire Structure in the Millimeter Waveband
By
Progress In Electromagnetics Research M, Vol. 82, 167-173, 2019
Abstract
A two-dimensional (2D) band-gap wire structure with a spatial defect has been fabricated and studied in order to demonstrate which way the violation of periodicity affects its spectral properties. We experimentally demonstrate and numerically verify the occurrence of defect modes revealed as localized resonant peak inside the band gap transmission spectrum of 2D band-gap wire structure. We also demonstrate the efficient frequency tunability of these defect mode peaks by varying defect size in the frequency range 22-40 GHz. The visualization and analysis of spatial electromagnetic (EM) field distribution within the defect of 2D band-gap wire structure is performed both experimentally and numerically. A good agreement between the experiment and numerical simulation is demonstrated.
Citation
Liubov Ivzhenko Eugene Odarenko Daria I. Yudina Sergey I. Tarapov , "Defect Mode Tuning in Two-Dimensional Band-Gap Wire Structure in the Millimeter Waveband," Progress In Electromagnetics Research M, Vol. 82, 167-173, 2019.
doi:10.2528/PIERM19020402
http://www.jpier.org/PIERM/pier.php?paper=19020402
References

1. Ozbay, E. and M. Bayindir, "Physics and applications of defect structures in photonic crystals,", A. S. Shumovsky, V. I. Rupasov, (eds.), ``Quantum communication and information technologies,'' NATO Science Series (Series II: Mathematics, Physics and Chemistry), Vol. 113, Springer, 2003, Philos. Mag., Vol. 14, 60-65, 1907.
doi:10.1038/nphoton.2007.141

2. Noda, S., M. Fujita, and T. Asano, "Spontaneous-emission control by photonic crystals and nanocavities," Nat. Photonics, Vol. 1, 449-458, 2007.
doi:10.1364/OPEX.14.000858

3. Ma, G., J. Shen, Z. Zhang, Z. Hua, and S. H. Tang, "Ultrafast all-optical switching in one-dimensional photonic crystal with two defects," Opt. Express, Vol. 14, 858-865, 2006.
doi:10.1364/JOSAB.16.000275

4. Painter, O., J. Vučković, and A. Scherer, "Defect modes of a two-dimensional photonic crystal in an optically thin dielectric slab," J. Opt. Soc. Am. B, Vol. 16, No. 2, 1999.

5. Sievenpiper, D. F., M. E. Sickmiller, and E. Yablonovitch, "3D wire mesh photonic crystals," Phys. Rev. B, Vol. 76, No. 14, 2480-2483, 1996.
doi:10.1016/0022-460X(90)90779-Y

6. Pierre, C., "Weak and strong vibration localization in disordered structures: A statistical investigation," Journal of Sound and Vibration, Vol. 139, 111-132, 1990.
doi:10.1016/0020-7683(77)90014-2

7. Ziegler, F., "Wave propagation in periodic and disordered layered composite elastic materials," International Journal of Solids and Structures, Vol. 13, 293-305, 1977.
doi:10.1063/1.1597416

8. Munday, J. N. and W. M. Robertson, "Slow electromagnetic pulse propagation through a narrow transmission band in a coaxial photonic crystal," Appl. Phys. Lett., Vol. 83, 1053, 2003.

9. Chen, C.-P., T. Anada, S. Greedy, T. M. Benson, and P. Sewell, "A novel photonic crystal band-pass filter using degenerate modes of a point-defect microcavity for terahertz communication systems," Microwave and Optical Technology Letters, Vol. 56, 792-797, 2014.
doi:10.1088/2040-8978/16/12/125005

10. Fan, H.-M., T.-B. Wang, N.-H. Liu, J.-T. Liu, Q.-H. Liao, and T.-B. Yu, "Tunable plasmonic band gap and defect mode in one-dimensional photonic crystal covered with graphene," J. Opt., Vol. 16, 125005, 2014.
doi:10.1088/0022-3727/44/20/205107

11. Hamidi, S. M., M. M. Tehranchi, and M. Shasti, "Engineered one-dimensional magneto-photonic crystals for wavelength division multiplexing systems," J. Phys. D: Appl. Phys., Vol. 44, 205107, 2011.
doi:10.1615/TelecomRadEng.v72.i20.50

12. Kharchenko, A. A. and S. I. Tarapov, "The spectrum of one-dimensional magnetophotonic crystal in the vicinity of the ferromagnetic resonance: Magnetic field dependence," Telecommunications and Radio Engineering, Vol. 72, No. 20, 1865-1872, 2013.
doi:10.1364/OME.4.002542

13. Lee, K. J., J. W. Wu, and K. Kim, "Defect modes in a one-dimensional photonic crystal with a chiral defect layer," Optical Materials Express, Vol. 4, No. 12, 2542-2550, 2014.
doi:10.2528/PIERL16090903

14. Ivzhenko, L. I., E. N. Odarenko, and S. I. Tarapov, "Mechanically tunable wire medium metamaterial in the millimeter wave band," Progress In Electromagnetics Research Letters, Vol. 64, 93-98, 2016.
doi:10.1615/TelecomRadEng.v76.i19.10

15. Ivzhenko, L. I., D. I. Yudina, and S. I. Tarapov, "Defective modes in an anisotropic wire metamaterial in the microwave range," Telecommunications and Radio Engineering, Vol. 76, No. 19, 1681-1688, 2017.
doi:10.1109/TAP.1962.1137809

16. Rotman, W., "Plasma simulation by artificial and parallel plate media," IRE Trans. Ant. Propagat., Vol. 10, No. 1, 82-95, 1962.
doi:10.1103/PhysRevLett.76.4773

17. Pendry, J. B., et al., "Extremely low frequency plasmons in metallic mesostructures," Phys. Rev. Lett., Vol. 76, No. 25, 4773-4776, 1996.

18. Valitov, R. A., S. F. Dyubko, V. V. Kamyshan, and V. P. Sheiko, "Method for measuring the field distribution in an open reson," Soviet Physics - JETP, Vol. 20, No. 4, 791-1077, 1965.
doi:10.4028/www.scientific.net/SSP.214.75

19. Kozhara, L. I., S. Y. Polevoy, and I. V. Popov, "Technique for analysis of the spatial field distribution in tapered wire medium," Solid State Phenomena, Vol. 214, 75-82, 2014.
doi:10.1016/j.cpc.2009.11.008

20. Oskooi, A. F., D. Roundy, M. Ibanescu, P. Bermel, J. Joannopoulos, and S. G. Johnson, "MEEP: A flexible free-software package for electromagnetic simulations by the FDTD method," Computer Physics Communications, Vol. 181, 687-702, 2010.