Vol. 82
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-28
Specific Emitter Identification via Feature Extraction in Hilbert-Huang Transform Domain
By
Progress In Electromagnetics Research M, Vol. 82, 117-127, 2019
Abstract
Aimed at the deficiency of conventional parameter-level methods in radar specific emitter identification (SEI), which heavily relies on empirical experience and cannot adapt to the waveform change, a novel algorithm is proposed to extract specific features and identify in Hilbert-Huang transform domain. Firstly, 2-dimensional physical representation of emitter is formed with Hilbert-Huang transform (HHT). Based on this, 4 types of multi-view features are constructed, and the feature space is spanned by elaborating the extraction. Principal components, between-class similarity, spectrum entropy, and deep architecture are used to describe the subtle features. Finally, support vector machine (SVM) is selected as the classifier to realize identification to alleviate the small sample problem. Experimental results show that the proposed algorithm realizes specific identification using 4 intentional modulations of simulated data. The selected 4 types of unintentional representations are feasible to discriminate identical emitters. Additionally, the proposed algorithm obtains higher accuracy than typical parameter-level methods in the signal-to-noise ratio (SNR) range [0, 20] dB.
Citation
Zhiwen Zhou Jing-Ke Zhang Taotao Zhang , "Specific Emitter Identification via Feature Extraction in Hilbert-Huang Transform Domain," Progress In Electromagnetics Research M, Vol. 82, 117-127, 2019.
doi:10.2528/PIERM19022502
http://www.jpier.org/PIERM/pier.php?paper=19022502
References

1. Ru, X. H., et al., "Recognition performance analysis of instantaneous phase and its transformed features for radar emitter identification," IET Radar, Sonar and Navigation, Vol. 10, No. 5, 945-952, 2016.
doi:10.1049/iet-rsn.2014.0512

2. Han, T. and Y. Y. Zhou, "Intuitive systemic models and intrinsic features for radar-specific emitter identification," Foundations and Practical Applications of Cognitive Systems and Information Processing, Vol. 215, 153-160, 2014.
doi:10.1007/978-3-642-37835-5_14

3. Conning, M. and F. Potgieter, "Analysis of measured radar data for specific emitter identification," IEEE Radar Conference, 35-38, IEEE Press, New York, 2010.

4. Ru, X. H., et al., "Frequency-domain distribution and bandwidth of unintentional modulation on pulse," Electronics Letters, Vol. 52, No. 22, 1853-1855, 2016.
doi:10.1049/el.2016.0733

5. Ru, X. H., et al., "Evaluation of unintentional modulation for pulse compression signals based on spectrum asymmetry," IET Radar, Sonar and Navigation, Vol. 11, No. 4, 656-663, 2017.
doi:10.1049/iet-rsn.2016.0248

6. Ye, H., Z. Liu, and W. Jiang, "Comparison of unintentional frequency and phase modulation features for specific emitter identification," Electronics Letters, Vol. 48, No. 14, 875-877, 2012.
doi:10.1049/el.2012.0831

7. Aubry, A., et al., "Cumulants-based radar specific emitter identification," 2011 International Workshop on Information Forensics and Security, 1-6, IEEE Press, New York, 2011.

8. Ren, M. Q., et al., "Radar signal feature extraction based on wavelet ridge and high order spectra analysis," IET International Radar Conference, 1-5, IEEE Press, New York, 2009.

9. Liang, K. Q., et al., "An individual emitter recognition method combining bispectrum with wavelet entropy," International Conference on Progress in Informatics and Computing, 206-210, IEEE Press, New York, 2015.

10. Ding, L. D., et al., "Specific emitter identification via convolutional neural networks," IEEE Communications Letters, Vol. 22, No. 12, 2591-2594, 2018.
doi:10.1109/LCOMM.2018.2871465

11. Kang, N. X., et al., "Radar emitter fingerprint recognition based on bispectrum and SURF feature," 2016 CIE International Conference on Radar, 1-5, Guangzhou, 2016.

12. Zhang, J. W., et al., "Specific emitter identification via Hilbert-Huang transform in single-hop and relaying scenarios," IEEE Transactions on Information Forensics and Security, Vol. 11, No. 6, 1192-1205, 2016.
doi:10.1109/TIFS.2016.2520908

13. Yuan, Y. J., et al., "Specific emitter identification based on Hilbert-Huang transform-based time-frequency-energy distribution features," IET Communications, Vol. 8, No. 13, 2404-2412, 2014.
doi:10.1049/iet-com.2013.0865

14. Hui, X. N., et al., "Hilbert-Huang transform time-frequency analysis in φ-OTDR distributed sensor," IEEE Photonics Technology Letters, Vol. 26, No. 23, 2403-2406, 2014.
doi:10.1109/LPT.2014.2358262

15. Han, J., et al., "Communication emitter individual identification via 3D-Hilbert energy spectrum-based multiscale segmentation features," International Journal Communication System, Vol. 32, No. 1, e3833, 2019, https://doi.org/10.1002/dac.3833.
doi:10.1002/dac.3833

16. Zhu, B. and W. D. Jin, "Feature extraction of radar emitter signal based on wavelet packet and EMD," Information Engineering and Applications, Vol. 7, No. 6, 198-205, 2012.

17. Liang, J. H., Z. T. Huang, and Z. W. Li, "Method of empirical mode decomposition in specific emitter identification," Wireless Personal Communications, Vol. 96, No. 3, 2447-2461, 2017.
doi:10.1007/s11277-017-4306-0

18. Guo, Q., et al., "Recognition of radar emitter signals based on SVD and AF main ridge slice," Journal of Communications and Networks, Vol. 17, No. 5, 491-498, 2015.
doi:10.1109/JCN.2015.000087

19. Zhang, G. X., et al., "Entropy feature extraction approach for radar emitter signals," International Conference on Intelligent Mechatronics and Automation, 621-625, IEEE Press, New York, 2004.

20. Zhou, Z. W., et al., "Automatic radar waveform recognition based on deep convolutional denoising auto-encoders," Circuits, Systems, and Signal Processing, Vol. 37, No. 9, 4034-4048, 2018.
doi:10.1007/s00034-018-0757-0

21. Chang, C. and C. Lin, "LIBSVM: A library for support vector machines,", http://www.csie.ntu.edu.tw/∼cjlin, 2001.