Vol. 82
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-02
Study of the Applicability of FE Nanotubes as an Anode Material of Lithium-Ion Batteries
By
Progress In Electromagnetics Research M, Vol. 82, 157-166, 2019
Abstract
The paper presents the results of the use of iron nanotubes as the anode material of lithium-ion batteries. To assess the degradation of the morphology of nanostructures after different numbers of cycles of life tests, the method of scanning electron microscopy, Mossbauer spectroscopy, and X-ray diffraction analysis were applied. It is shown that the decrease in discharge capacity starts at the 380th cycle and is caused by the onset of degradation processes of nanostructures due to the formation of amorphous inclusions and an increase in macrostresses and distortions in the structure. The complete degradation of the structure is observed after the 492nd life cycle test. According to the data obtained by Mossbauer spectroscopy, it has been established that an increase in life cycles leads to an increase in contribution of partial spectrum characteristic of a paramagnetic state. That indicates an increase in degradation rate of nanostructures and an increase in the content of impurity inclusions and amorphous formations in the crystal structure.
Citation
Artem Leonidovich Kozlovskiy Maxim Vladimirovich Zdorovets Alena Euhenauna Shumskaya Kayrat Kamalovich Kadyrzhanov , "Study of the Applicability of FE Nanotubes as an Anode Material of Lithium-Ion Batteries," Progress In Electromagnetics Research M, Vol. 82, 157-166, 2019.
doi:10.2528/PIERM19030201
http://www.jpier.org/PIERM/pier.php?paper=19030201
References

1. Lahiri, I. and W. Choi, "Carbon nanostructures in lithium ion batteries: Past, present, and future," Critical Reviews in Solid State and Materials Sciences, Vol. 38, No. 2, 128-166, 2013.
doi:10.1080/10408436.2012.729765

2. Xia, T., et al., "Facile complex-coprecipitation synthesis of mesoporous Fe3O4 nanocages and their high lithium storage capacity as anode material for lithium-ion batteries," Electrochimica Acta, Vol. 160, 114-122, 2015.
doi:10.1016/j.electacta.2015.02.017

3. Liu, J., et al., "A flexible alkaline rechargeable Ni/Fe battery based on graphene foam/carbon nanotubes hybrid film," Nano Letters, Vol. 14, No. 12, 7180-7187, 2014.
doi:10.1021/nl503852m

4. Kozlovskiy, A., et al., "Mossbauer research of Fe/Co nanotubes based on track membranes," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 381, 103-109, 2016.
doi:10.1016/j.nimb.2016.05.026

5. Wu, Q., et al., "Microwave absorption and mechanical properties of cross-scale SiC composites," Composites Part B: Engineering, Vol. 155, 83-91, 2018.
doi:10.1016/j.compositesb.2018.08.020

6. Shanbedi, M., et al., "Effect of magnetic field on thermo-physical and hydrodynamic properties of different metals-decorated multi-walled carbon nanotubes-based water coolants in a closed conduit," Journal of Thermal Analysis and Calorimetry, Vol. 131, No. 2, 1089-1106, 2018.
doi:10.1007/s10973-017-6628-2

7. Zakaria, M. R., et al., "Comparative study of graphene nanoparticle and multiwall carbon nanotube filled epoxy nanocomposites based on mechanical, thermal and dielectric properties," Composites Part B: Engineering, Vol. 119, 57-66, 2017.
doi:10.1016/j.compositesb.2017.03.023

8. Lobiak, E. V., et al., "Structure and electrochemical properties of carbon nanotubes synthesized with catalysts obtained by decomposition of Co, Ni, and Fe polyoxomolybdates supported by MgO," Journal of Structural Chemistry, Vol. 59, No. 4, 786-792, 2018.
doi:10.1134/S0022476618040066

9. Cheng, H.-M., C. Liu, and P.-X. Hou, "Field emission from carbon nanotubes," Nanomaterials Handbook, 2nd Edition, 255-272, CRC Press, 2017.

10. Shirvanimoghaddam, K., et al., "Carbon fiber reinforced metal matrix composites: Fabrication processes and properties," Composites Part A: Applied Science and Manufacturing, Vol. 92, 70-96, 2017.
doi:10.1016/j.compositesa.2016.10.032

11. Rusakov, V. S., et al., "A Mössbauer study of iron and iron-cobalt nanotubes in polymer ion-track membranes," Moscow University Physics Bulletin, Vol. 71, No. 2, 193-201, 2016.
doi:10.3103/S0027134916020090

12. Chen, C. and X. Wang, "Adsorption of Ni (II) from aqueous solution using oxidized multiwall carbon nanotubes," Industrial & Engineering Chemistry Research, Vol. 45, No. 26, 9144-9149, 2006.
doi:10.1021/ie060791z

13. Kadyrzhanov, K. K., V. S. Rusakov, A. L. Kozlovskiy, M. V. Zdorovets, E. Y. Kaniukov, A. E. Shumskaya, I. E. Kenzhina, and M. S. Fadeev, "Structural and magnetic studies of Fe100-X Cox nanotubes obtained by template method," Progress In Electromagnetics Research C, Vol. 82, 77-88, 2018.
doi:10.2528/PIERC17120501

14. Abukhadra, M. R., et al., "Superior removal of Co 2+, Cu 2+ and Zn 2+ contaminants from water utilizing spongy Ni/Fe carbonate-fluorapatite; preparation, application and mechanism," Ecotoxicology and Environmental Safety, Vol. 157, 358-368, 2018.
doi:10.1016/j.ecoenv.2018.03.085

15. Shumskaya, A. E., E. Y. Kaniukov, A. L. Kozlovskiy, D. I. Shlimas, M. V. Zdorovets, M. A. Ibragimova, V. S. Rusakov, and K. K. Kadyrzhanov, "Template synthesis and magnetic characterization of FeNi nanotubes," Progress In Electromagnetics Research C, Vol. 75, 23-30, 2017.
doi:10.2528/PIERC17030606

16. Korolkov, I. V., et al., "Immobilization of carborane derivatives on Ni/Fe nanotubes for BNCT," Journal of Nanoparticle Research, Vol. 20, No. 9, 240, 2018.
doi:10.1007/s11051-018-4346-8

17. Sellmyer, D. J., M. Zheng, and R. Skomski, "Magnetism of Fe, Co and Ni nanowires in self-assembled arrays," Journal of Physics: Condensed Matter, Vol. 13, No. 25, R433, 2001.
doi:10.1088/0953-8984/13/25/201

17. Paulo, V. I. M., et al., "Magnetization curves of electrodeposited Ni, Fe and Co nanotubes," Materials Letters, Vol. 223, 78-81, 2018.
doi:10.1016/j.matlet.2018.04.025

19. Taberna, P.-L., et al., "High rate capabilities Fe3O4-based Cu nano-architectured electrodes for lithium-ion battery applications," Nature Materials, Vol. 5, No. 7, 567, 2006.
doi:10.1038/nmat1672

20. Kozlovskiy, A. and M. Zdorovets, "Study of the applicability of directional modification of nanostructures to improve the efficiency of their performance as the anode material of lithiumion batteries," Materials Research Express, Vol. 6, No. 7, 075066, 2019.
doi:10.1088/2053-1591/ab1983

21. Kozlovskiy, A., et al., "Effect of irradiation with C 2+ and O 2+ ions on the structural and conductive characteristics of copper nanostructures," Materials Research Express, Vol. 6, No. 7, 075072, 2019.
doi:10.1088/2053-1591/ab18cf

22. Chen, Z., et al., "Carbon particles modified macroporous Si/Ni composite as an advanced anode material for lithium ion batteries," International Journal of Hydrogen Energy, Vol. 44, No. 2, 1078-1087, 2019.
doi:10.1016/j.ijhydene.2018.11.065

23. Li, Q., et al., "Porous nitrogen-doped carbon nanofibers assembled with nickel nanoparticles for lithium-sulfur batteries," Nanoscale, Vol. 11, No. 2, 647-655, 2019.
doi:10.1039/C8NR07220E

24. Shlimas, D. A., et al., "Study of the use of ionizing radiation to improve the efficiency of performance of nickel nanostructures as anodes of lithium-ion batteries," Materials Research Express, Vol. 6, No. 5, 055026, 2019.
doi:10.1088/2053-1591/ab043b

25. Lee, S. H., et al., "Self-assembled Fe3O4 nanoparticle clusters as high-performance anodes for lithium ion batteries via geometric confinement," Nano Letters, Vol. 13, No. 9, 4249-4256, 2013.
doi:10.1021/nl401952h

26. Wang, J.-Z., et al., "Graphene-encapsulated Fe3O4 nanoparticles with 3D laminated structure as superior anode in lithium ion batteries," Chemistry - A European Journal, Vol. 17, No. 2, 661-667, 2011.
doi:10.1002/chem.201001348

27. He, C., et al., "Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material," ACS Nano, Vol. 7, No. 5, 4459-4469, 2013.
doi:10.1021/nn401059h

28. Wang, F., et al., "Microwave absorption properties of 3D cross-linked Fe/C porous nanofibers prepared by electrospinning," Carbon, Vol. 134, 264-273, 2018.
doi:10.1016/j.carbon.2018.03.081

29. Torres, D., J. Pinilla, and I. Suelves, "Co-, Cu- and Fe-doped Ni/Al2O3 catalysts for the catalytic decomposition of methane into hydrogen and carbon nanofibers," Catalysts, Vol. 8, No. 8, 300, 2018.
doi:10.3390/catal8080300

30. Li, Y., et al., "Annealing effects on the microstructure, magnetism and microwave-absorption properties of Fe/TiO2 nanocomposites," Journal of Magnetism and Magnetic Materials, Vol. 471, 346-354, 2019.
doi:10.1016/j.jmmm.2018.09.101

31. Azab, A. A., E. E. Ateia, and S. A. Esmail, "Comparative study on the physical properties of transition metal-doped (Co, Ni, Fe, and Mn) ZnO nanoparticles," Applied Physics A, Vol. 124, No. 7, 469, 2018.
doi:10.1007/s00339-018-1871-3

32. Kurakhmedov, A. E., et al., "Asymmetrical track-etched membranes prepared by double-sided irradiation on the DC-60 cyclotron," Petroleum Chemistry, Vol. 57, No. 6, 489-497, 2017.
doi:10.1134/S0965544117060056

33. Kaniukov, E. Y., et al., "Evolution of the polyethylene terephthalate track membranes parameters at the etching process," Journal of Contemporary Physics (Armenian Academy of Sciences), Vol. 52, No. 2, 155-160, 2017.
doi:10.3103/S1068337217020098

34. Matsnev, M. E. and V. S. Rusakov, "SpectrRelax: An application for Mössbauer spectra modeling and fitting," AIP Conference Proceedings, Vol. 1489, No. 1, AIP, 2012.

35. Kozlovskiy, A., et al., "Study of Ni/Fe nanotube properties," Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 365, 663-667, 2015.
doi:10.1016/j.nimb.2015.09.090