Vol. 81
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-05-22
A Broadband Optical Isolator Based on Chiral Plasmonic-Metamaterial Design
By
Progress In Electromagnetics Research M, Vol. 81, 67-73, 2019
Abstract
We theoretically propose a novel achromatic optical isolator based on circular dichroism in metamaterials of twisted chains of metallic nanoparticles. The suggested optical isolator consists of an input polarizer, followed by quarter-wave plate, then a circular dichroism material, another quarter-wave plate, and an output polarizer. In contrast to the most commonly used optical isolators, the current scheme does not use magnetic field and does not change the polarization plane.
Citation
Andon Rangelov, Sotiris Droulias, and Vassilios Yannopapas, "A Broadband Optical Isolator Based on Chiral Plasmonic-Metamaterial Design," Progress In Electromagnetics Research M, Vol. 81, 67-73, 2019.
doi:10.2528/PIERM19032005
References

1. Jalas, D., A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, "What is and what is not an optical isolator," Nat. Photonics, Vol. 7, 579-582, 2013.
doi:10.1038/nphoton.2013.185

2. Rayleigh, L. V., "On the constant of magnetic rotation of light in bisulphide of carbon," Phil. Trans. R. Soc. Lond, Vol. 176, 343, 1885.
doi:10.1098/rstl.1885.0005

3. Ibrahim, S. K., S. Bhandare, D. Sandel, H. Zhang, and R. Noe, "Non-magnetic 30 dB integrated optical isolator in III/V material," Electron. Lett., Vol. 40, 1293-1294, 2004.
doi:10.1049/el:20045901

4. Kang, M. S., A. Butsch, and P. St. J. Russell, "Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre," Nat. Photonics, Vol. 5, 549-553, 2011.
doi:10.1038/nphoton.2011.180

5. Doerr, C. R., N. Dupius, and L. Zhang, "Optical isolator using two tandem phase modulators," Opt. Lett., Vol. 36, 4293-4295, 2011.
doi:10.1364/OL.36.004293

6. Doerr, C. R., L. Chen, and D. Vermeulen, "Silicon photonics broadband modulation-based isolator," Opt. Express, Vol. 22, 4493-4498, 2014.
doi:10.1364/OE.22.004493

7. Dong, P. and C. Gui, "Observation of nonreciprocal transmission in binary phase-shift keying modulation using traveling-wave Mach-Zehnder modulators," Opt. Lett., Vol. 41, 2723-2726, 2016.
doi:10.1364/OL.41.002723

8. Trevino-Palacios, C. G., G. I. Stegeman, and P. Baldi, "Spatial nonreciprocity in waveguide second-order processes," Opt. Lett., Vol. 21, 1442-1444, 1996.
doi:10.1364/OL.21.001442

9. Gallo, K., G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide," Appl. Phys. Lett., Vol. 79, 314, 2001.
doi:10.1063/1.1386407

10. Soljai, M., C. Luo, J. D. Joannopoulos, and S. Fan, "Nonlinear photonic crystal microdevices for optical integration," Opt. Lett., Vol. 28, 637-639, 2003.
doi:10.1364/OL.28.000637

11. Lepri, S. and G. Casati, "Nonlinear photonic crystal microdevices for optical integration," Phys. Rev. Lett., Vol. 106, 164101, 2011.
doi:10.1103/PhysRevLett.106.164101

12. Fan, L., J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, "An all-silicon passive optical diode," Science, Vol. 335, 447-450, 2012.
doi:10.1126/science.1214383

13. Peng, B., S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, "Parity-time-symmetric whispering-gallery microcavities," Nature Phys., Vol. 10, 394-398, 2014.
doi:10.1038/nphys2927

14. Berova, N., K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications, John Wiley & Sons, New York, 2000.

15. Shadrivov, I. V., V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, "Electromagnetic wave analogue of an electronic diode," New J. Phys., Vol. 13, 033025, 2011.
doi:10.1088/1367-2630/13/3/033025

16. Droulias, S. and V. Yannopapas, "Electromagnetic wave analogue of an electronic diode," J. Phys. Chem. C, Vol. 117, 1130, 2013.
doi:10.1021/jp311075z

17. Eksmaoptics http://eksmaoptics.com/optical-components/polarizing-optics/retardation-plates-quartz-achromatic-wave-plates/.

18. Holmarc https://holmarc.com/beamsplitters.php.

19. Thorlabs https://www.thorlabs.com/.

20. Khoo, I. C., Liquid Crystals, Wiley, New Jersey, 2007.
doi:10.1002/0470084030

21. Scharf, T., Polarized Light in Liquid Crystals and Polymers, Wiley, New Jersey, 2007.

22. Purcell, E. M. and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J., Vol. 186, 705-714, 1973.
doi:10.1086/152538

23. Draine, B. T., "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A, Vol. 11, 1491-1499, 1994.
doi:10.1364/JOSAA.11.001491

24. Flatau, P. J., "Improvements in the discrete-dipole approximation method of computing scattering and absorption," Opt. Lett., Vol. 22, 1205-1207, 1997.
doi:10.1364/OL.22.001205

25. Yurkin, M. A. and A. G. Hoekstra, "The discrete dipole approximation: An overview and recent developments," J. Quant. Spectrosc. Radiat. Transfer, Vol. 106, 558-589, 2007.
doi:10.1016/j.jqsrt.2007.01.034

26. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for periodic targets: Theory and tests," J. Opt. Soc. Am. A, Vol. 25, 2693-2703, 2008.
doi:10.1364/JOSAA.25.002693

27. Tserkezis, C., M. A. T. Yesilyurt, J. S. Huang, and N. A. Mortensen, "Circular dichroism in nanoparticle helices as a template for assessing quantum-informed models in plasmonics," ACS Photonics, Vol. 5, 5017, 2018.
doi:10.1021/acsphotonics.8b01261

28. Johnson, R. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.
doi:10.1103/PhysRevB.6.4370

29. Kanie, K., M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, "Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona," J. Am. Chem. Soc., Vol. 134, 808-811, 2011.
doi:10.1021/ja2095816

30. Bitar, R., G. Agez, and M. Mitov, "Cholesteric liquid crystal self-organization of gold nanoparticles," Soft Matter, Vol. 7, 8198, 2011.
doi:10.1039/c1sm05628j

31. Yu, C. H., C. P. J. Schubert, C. Welch, B. J. Tang, M. G. Tamba, and G. H. Mehl, "Design, synthesis, and characterization of mesogenic amine-capped nematic gold nanoparticles with surface-enhanced plasmonic resonances," J. Am. Chem. Soc., Vol. 134, 5076-5079, 2012.
doi:10.1021/ja300492d

32. Kalhor, S., M. Ghanaatshoar, T. Kashiwagi, K. Kadowaki, M. J. Kelly, and K. Delfanazari, "Thermal tuning of high-Tc superconducting Bi2Sr2CaCu2O8+d terahertz metamaterial," IEEE Photonics Journal, Vol. 9, No. 5, 1400308, 2017.
doi:10.1109/JPHOT.2017.2754465