Vol. 81

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2019-05-22

A Broadband Optical Isolator Based on Chiral Plasmonic-Metamaterial Design

By Andon Rangelov, Sotiris Droulias, and Vassilios Yannopapas
Progress In Electromagnetics Research M, Vol. 81, 67-73, 2019
doi:10.2528/PIERM19032005

Abstract

We theoretically propose a novel achromatic optical isolator based on circular dichroism in metamaterials of twisted chains of metallic nanoparticles. The suggested optical isolator consists of an input polarizer, followed by quarter-wave plate, then a circular dichroism material, another quarter-wave plate, and an output polarizer. In contrast to the most commonly used optical isolators, the current scheme does not use magnetic field and does not change the polarization plane.

Citation


Andon Rangelov, Sotiris Droulias, and Vassilios Yannopapas, "A Broadband Optical Isolator Based on Chiral Plasmonic-Metamaterial Design," Progress In Electromagnetics Research M, Vol. 81, 67-73, 2019.
doi:10.2528/PIERM19032005
http://www.jpier.org/PIERM/pier.php?paper=19032005

References


    1. Jalas, D., A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J. D. Joannopoulos, M. Vanwolleghem, C. R. Doerr, and H. Renner, "What is and what is not an optical isolator," Nat. Photonics, Vol. 7, 579-582, 2013.
    doi:10.1038/nphoton.2013.185

    2. Rayleigh, L. V., "On the constant of magnetic rotation of light in bisulphide of carbon," Phil. Trans. R. Soc. Lond, Vol. 176, 343, 1885.
    doi:10.1098/rstl.1885.0005

    3. Ibrahim, S. K., S. Bhandare, D. Sandel, H. Zhang, and R. Noe, "Non-magnetic 30 dB integrated optical isolator in III/V material," Electron. Lett., Vol. 40, 1293-1294, 2004.
    doi:10.1049/el:20045901

    4. Kang, M. S., A. Butsch, and P. St. J. Russell, "Reconfigurable light-driven opto-acoustic isolators in photonic crystal fibre," Nat. Photonics, Vol. 5, 549-553, 2011.
    doi:10.1038/nphoton.2011.180

    5. Doerr, C. R., N. Dupius, and L. Zhang, "Optical isolator using two tandem phase modulators," Opt. Lett., Vol. 36, 4293-4295, 2011.
    doi:10.1364/OL.36.004293

    6. Doerr, C. R., L. Chen, and D. Vermeulen, "Silicon photonics broadband modulation-based isolator," Opt. Express, Vol. 22, 4493-4498, 2014.
    doi:10.1364/OE.22.004493

    7. Dong, P. and C. Gui, "Observation of nonreciprocal transmission in binary phase-shift keying modulation using traveling-wave Mach-Zehnder modulators," Opt. Lett., Vol. 41, 2723-2726, 2016.
    doi:10.1364/OL.41.002723

    8. Trevino-Palacios, C. G., G. I. Stegeman, and P. Baldi, "Spatial nonreciprocity in waveguide second-order processes," Opt. Lett., Vol. 21, 1442-1444, 1996.
    doi:10.1364/OL.21.001442

    9. Gallo, K., G. Assanto, K. R. Parameswaran, and M. M. Fejer, "All-optical diode in a periodically poled lithium niobate waveguide," Appl. Phys. Lett., Vol. 79, 314, 2001.
    doi:10.1063/1.1386407

    10. Soljai, M., C. Luo, J. D. Joannopoulos, and S. Fan, "Nonlinear photonic crystal microdevices for optical integration," Opt. Lett., Vol. 28, 637-639, 2003.
    doi:10.1364/OL.28.000637

    11. Lepri, S. and G. Casati, "Nonlinear photonic crystal microdevices for optical integration," Phys. Rev. Lett., Vol. 106, 164101, 2011.
    doi:10.1103/PhysRevLett.106.164101

    12. Fan, L., J. Wang, L. T. Varghese, H. Shen, B. Niu, Y. Xuan, A. M. Weiner, and M. Qi, "An all-silicon passive optical diode," Science, Vol. 335, 447-450, 2012.
    doi:10.1126/science.1214383

    13. Peng, B., S. K. Özdemir, F. Lei, F. Monifi, M. Gianfreda, G. L. Long, S. Fan, F. Nori, C. M. Bender, and L. Yang, "Parity-time-symmetric whispering-gallery microcavities," Nature Phys., Vol. 10, 394-398, 2014.
    doi:10.1038/nphys2927

    14. Berova, N., K. Nakanishi, and R. W. Woody, Circular Dichroism: Principles and Applications, John Wiley & Sons, New York, 2000.

    15. Shadrivov, I. V., V. A. Fedotov, D. A. Powell, Y. S. Kivshar, and N. I. Zheludev, "Electromagnetic wave analogue of an electronic diode," New J. Phys., Vol. 13, 033025, 2011.
    doi:10.1088/1367-2630/13/3/033025

    16. Droulias, S. and V. Yannopapas, "Electromagnetic wave analogue of an electronic diode," J. Phys. Chem. C, Vol. 117, 1130, 2013.
    doi:10.1021/jp311075z

    17. Eksmaoptics http://eksmaoptics.com/optical-components/polarizing-optics/retardation-plates-quartz-achromatic-wave-plates/.

    18. Holmarc https://holmarc.com/beamsplitters.php.

    19. Thorlabs https://www.thorlabs.com/.

    20. Khoo, I. C., Liquid Crystals, Wiley, New Jersey, 2007.
    doi:10.1002/0470084030

    21. Scharf, T., Polarized Light in Liquid Crystals and Polymers, Wiley, New Jersey, 2007.

    22. Purcell, E. M. and C. R. Pennypacker, "Scattering and absorption of light by nonspherical dielectric grains," Astrophys. J., Vol. 186, 705-714, 1973.
    doi:10.1086/152538

    23. Draine, B. T., "Discrete-dipole approximation for scattering calculations," J. Opt. Soc. Am. A, Vol. 11, 1491-1499, 1994.
    doi:10.1364/JOSAA.11.001491

    24. Flatau, P. J., "Improvements in the discrete-dipole approximation method of computing scattering and absorption," Opt. Lett., Vol. 22, 1205-1207, 1997.
    doi:10.1364/OL.22.001205

    25. Yurkin, M. A. and A. G. Hoekstra, "The discrete dipole approximation: An overview and recent developments," J. Quant. Spectrosc. Radiat. Transfer, Vol. 106, 558-589, 2007.
    doi:10.1016/j.jqsrt.2007.01.034

    26. Draine, B. T. and P. J. Flatau, "Discrete-dipole approximation for periodic targets: Theory and tests," J. Opt. Soc. Am. A, Vol. 25, 2693-2703, 2008.
    doi:10.1364/JOSAA.25.002693

    27. Tserkezis, C., M. A. T. Yesilyurt, J. S. Huang, and N. A. Mortensen, "Circular dichroism in nanoparticle helices as a template for assessing quantum-informed models in plasmonics," ACS Photonics, Vol. 5, 5017, 2018.
    doi:10.1021/acsphotonics.8b01261

    28. Johnson, R. B. and R. W. Christy, "Optical constants of the noble metals," Phys. Rev. B, Vol. 6, 4370, 1972.
    doi:10.1103/PhysRevB.6.4370

    29. Kanie, K., M. Matsubara, X. Zeng, F. Liu, G. Ungar, H. Nakamura, and A. Muramatsu, "Simple cubic packing of gold nanoparticles through rational design of their dendrimeric corona," J. Am. Chem. Soc., Vol. 134, 808-811, 2011.
    doi:10.1021/ja2095816

    30. Bitar, R., G. Agez, and M. Mitov, "Cholesteric liquid crystal self-organization of gold nanoparticles," Soft Matter, Vol. 7, 8198, 2011.
    doi:10.1039/c1sm05628j

    31. Yu, C. H., C. P. J. Schubert, C. Welch, B. J. Tang, M. G. Tamba, and G. H. Mehl, "Design, synthesis, and characterization of mesogenic amine-capped nematic gold nanoparticles with surface-enhanced plasmonic resonances," J. Am. Chem. Soc., Vol. 134, 5076-5079, 2012.
    doi:10.1021/ja300492d

    32. Kalhor, S., M. Ghanaatshoar, T. Kashiwagi, K. Kadowaki, M. J. Kelly, and K. Delfanazari, "Thermal tuning of high-Tc superconducting Bi2Sr2CaCu2O8+d terahertz metamaterial," IEEE Photonics Journal, Vol. 9, No. 5, 1400308, 2017.
    doi:10.1109/JPHOT.2017.2754465