Vol. 83
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-07-15
Side-Lobe Jamming Based on Digital Channelization
By
Progress In Electromagnetics Research M, Vol. 83, 19-28, 2019
Abstract
Deceptive jamming plays an irreplaceable role in electronic counter measures (ECM) due to its flexibility and high power efficiency. Based on digital channelized receiver, this paper proposes a novel deceptive jamming method for linear frequency modulation (LFM) radar, side lobe jamming, which builds decoy group utilizing filter side lobes. Via adjusting the filter structure properly, this method produces false targets at specific positions. Unlike intermittent sampling repeater jamming (ISRJ) which forms a train of symmetric decoys, side-lobe jamming can generate asymmetric false targets, which is more deceptive. On the other hand, it can produce much more false targets than ISRJ, which has a certain suppressive effect on the radar. The experimental results with simulated data verify the effectiveness of the proposed algorithm.
Citation
Chengcheng Si Bo Peng Sixian Gong Xiang Li , "Side-Lobe Jamming Based on Digital Channelization," Progress In Electromagnetics Research M, Vol. 83, 19-28, 2019.
doi:10.2528/PIERM19032801
http://www.jpier.org/PIERM/pier.php?paper=19032801
References

1. Michael, R. F. and R. Michael, Electronic Warfare for the Digitized Battlefield, Artech House, London, UK, 2001, ISBN: 978-1580532716.

2. Wu, X. F., D. H. Dai, X. S. Wang, and H. Z. Lu, "Review of synthetic aperture radar electronic countermeasures," Signal Processing, Vol. 3, 424-435, 2010, doi: 10.3969/j.issn.1003-0530.2010.03.017.

3. Zhou, F., M. D. Xing, X. R. Bai, G. C. Sun, and Z. Bao, "Narrow-band interference suppression for SAR based on complex empirical mode decomposition," IEEE Trans. Geosci. Remote Sens., Vol. 6, 423-427, 2009, doi: 10.1109/LGRS.2009.2015340.
doi:10.1109/LGRS.2009.2015340

4. Xu, S. K., "Research on SAR deception jamming methods,", National University of Defense Technology, Changsha, China, 2012.

5. Wang, R. J., B. Sun, X. Wang, and S. Y. Cheng, "Transmitting pulse encoding for beyond-PRT retransmitting deception jamming detection in spaceborne synthetic aperture radar (SAR)," Sensors, Vol. 18, No. 5, 1666, 2018, doi: 10.3390/s18051666.
doi:10.3390/s18051666

6. Liu, Z., J. P. Sui, Z. H. Wei, and X. Li, "A sparse-driven anti-velocity deception jamming strategy based on pulse-doppler radar with random pulse initial phases," Sensors, Vol. 18, No. 4, 1249, 2018, doi: 10.3390/s18041249.
doi:10.3390/s18041249

7. Wang, R. J., J. Chen, X. Wang, and B. Sun, "High-performance anti-retransmission deception jamming utilizing range direction multiple input and multiple output (MIMO) synthetic aperture radar (SAR)," Sensors, Vol. 17, No. 1, 123, 2017, doi: 10.3390/s17010123.
doi:10.3390/s17010123

8. Berger, S., "Digital radio frequency memory linear range gate stealer spectrum," IEEE Transactions on Aerospace and Electronic Systems, Vol. 39, No. 2, 725-735, 2003, doi: 10.1109/TAES.2003.1207279.
doi:10.1109/TAES.2003.1207279

9. Adler, E. and E. Viverios, "Direct digital synthesis application for radar development," IEEE Int. Radar Conf., Washington, DC, May 1995.

10. Lou, C. Y., J. L. Xu, and X. N. Yang, Software-defined Radio: Principles and Practice, Publishing House of Electronics Industry, Beijing, China, 2014, ISBN: 9787121236785.

11. Wang, X. S., et al., "Mathematic principles of interrupted-sampling repeater jamming (ISRJ)," Science in China. Series F: Information Sciences, Vol. 50, No. 1, 113-123, 2007, doi: 10.1007/s11432-007-2017-y.
doi:10.1007/s11432-007-2017-y

12. Feng, D. J., L. T. Xu, X. Y. Pan, and X. S. Wang, "Jamming wideband radar using interrupted-sampling repeater," IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 3, 1341-1354, 2017, doi: 10.1109/TAES.2017.2670958.
doi:10.1109/TAES.2017.2670958

13. Scafd, G., "Techniques employed in ESM receiving systems for signal detection, frequency measurement and direction finding in the 1 GHz to 20 GHz frequency range," 4th European Microwave Conference, Montreux, Switzerland, September 1974.

14. Hofmann, C. B. and A. R. Baron, "Wideband ESM receiving systems. II," Microwave Journal, Vol. 24, 57-61, 1981.

15. Allen, D. E., "Channelised receiver - A viable solution for EW and ESM systems," Communications, Radar and Signal Processing, IEE Proceedings F, Vol. 129, No. 3, 172-179, 1982, doi: 10.1049/ip-f-1:19820026.
doi:10.1049/ip-f-1.1982.0026

16. Chen, X., et al., "Robust waveform and filter bank design of polarimetric radar," IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 1, 370-384, 2017, doi: 10.1109/TAES.2017.2650619.
doi:10.1109/TAES.2017.2650619

17. Wang, H., Y. Lu, and X. Wang, "Channelized receiver with WOLA filterbank," 2006 CIE International Conference on Radar, Shanghai, China, October 2006.

18. James, T., Digital Techniques for Wideband Receivers, Artech House, Norwood, USA, 1995, ISBN: 9780890068083.

19. Zhu, X., "A new wideband digital receiver and parameter estimation of pulse compression radar signals,", Harbin Engineering University, Harbin, China, 2008.

20. Daniel, R. Z., L. S. David, and W. F. Timothy, "A hardware-efficient multirate, digital channelized receiver architecture," IEEE Transactions on Aerospace and Electronic Systems, Vol. 34, No. 1, 137-147, 1998, doi: 10.1109/7.640270.
doi:10.1109/7.640270

21. Gong, S. X., "Research of active jamming technology and ECCM for wideband LFM radar,", National University of Defense Technology, Changsha, China, 2015.

22. Wu, C. Z. and K. L. Teo, "Design of discrete Fourier transform modulated filter bank with sharp transition band," IET Signal Processing, Vol. 5, No. 4, 433-440, 2011, doi: 10.1049/ietspr.2009.0269.
doi:10.1049/iet-spr.2009.0269

23. Eghbali, A., H. Johansson, and P. Lowenborg, "Reconfigurable nonuniform transmulti-plexers using uniform modulated filter banks," IEEE Transactions on Circuits and Systems I - Regular Papers, Vol. 58, No. 3, 539-547, 2011, doi: 10.1109/TCSI.2010.2072290.
doi:10.1109/TCSI.2010.2072290