Vol. 82
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-06-13
Suppression of IMD3 in CMOS Power Amplifier Using Bias Circuit of Common-Gate Transistor with Cascode Structure
By
Progress In Electromagnetics Research M, Vol. 82, 1-8, 2019
Abstract
In this study, we propose a technique to improve the linearity of complementary metal-oxide semiconductor (CMOS) power amplifiers with a cascode structure. From the investigation of the influence of the impedance of an envelope signal on the linearity, we find that the load impedance of the envelope signal of the common-source transistor should be reduced. To obtain alow load impedance of the envelope signal, we reduce the value of the gate resistor of the common-gate transistor. After investigating the influences of the value of the resistance on the third-order intermodulation distortion (IMD3), we extract the optimum value of the resistance. We also consider the electrostatic discharge protection issue and the effects of the variations in the parasitic components of bond-wires, in the process of the extraction of the optimum value. To verify the feasibility of the optimization technique of the resistance ofthe bias circuit of the common-gate transistor of the amplifier, we design a power amplifier using a 180-nm RFCMOS process for wireless local area network (WLAN) 802.11n applications. We obtain the measured maximum linear output power of 22.2 dBm with a 26.7% power-added efficiency and a 3.72% error vector magnitude. We use an 802.11n modulated signal with 64-QAM (MCS7) at 65 Mb/s. From the measured results, we successfully verify the feasibility of the proposed optimization technique of the resistance of the bias circuit of the common-gate transistor.
Citation
Jinwon Kim, Changhyun Lee, Jinho Yoo, and Changkun Park, "Suppression of IMD3 in CMOS Power Amplifier Using Bias Circuit of Common-Gate Transistor with Cascode Structure," Progress In Electromagnetics Research M, Vol. 82, 1-8, 2019.
doi:10.2528/PIERM19041105
References

1. Lim, W., et al. "Dual-mode CMOS power amplifier based on load-impedance modulation," IEEE Microw. Wirel. Compon. Lett., Vol. 28, 1041-1043, 2018.
doi:10.1109/LMWC.2018.2871339

2. Jeong, G., T. Joo, and S. Hong, "A highly linear and efficient CMOS power amplifier with cascode-cascade configuration," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 596-598, 2017.
doi:10.1109/LMWC.2017.2701327

3. Kang, S., G. Jeong, and S. Hong, "Study on dynamic body bias controls of RF CMOS cascode power amplifier," IEEE Microw. Wirel. Compon. Lett., Vol. 28, 705-707, 2018.
doi:10.1109/LMWC.2018.2849209

4. Kang, S., D. Baek, and S. Hong, "A 5-GHz WLAN RF CMOS power amplifier with a parallel-cascoded configuration and an active feedback linearizer," IEEE Trans. Microw. Theory Techn., Vol. 65, 3230-3244, 2017.
doi:10.1109/TMTT.2017.2691766

5. Park, J., C. Lee, and C. Park, "A quad-band CMOS linear power amplifier for EDGE applications using an anti-phase method to enhance its linearity," IEEE Trans. Circuits Syst. I - Regul. Pap., Vol. 64, 765-776, 2017.
doi:10.1109/TCSI.2016.2620559

6. Park, J., C. Lee, J. Yoo, and C. Park, "A CMOS antiphase power amplifier with an MGTR technique for mobile applications," IEEE Trans. Microw. Theory Techn., Vol. 65, 4645-4656, 2017.
doi:10.1109/TMTT.2017.2709304

7. Jin, S., M. Kwon, K. Moon, B. Park, and B. Kim, "Control of IMD asymmetry of CMOS power amplifier for broadband operation using wideband signal," IEEE Trans. Microw. Theory Techn., Vol. 61, 3753-3762, 2013.
doi:10.1109/TMTT.2013.2280116

8. Jung, S.-C., et al. "A new envelope predistorter with envelope delay taps for memory effect compensation," IEEE Trans. Microw. Theory Techn., Vol. 55, 52-59, 2007.
doi:10.1109/TMTT.2006.886909

9. Joo, T., B. Koo, and S. Hong, "A WLAN RF CMOS PA with large signal MGTR method," IEEE Trans. Microw. Theory Techn., Vol. 61, 1272-1279, 2013.
doi:10.1109/TMTT.2013.2244228

10. Joo, T., B. Koo, and S. Hong, "A WLAN RF CMOS PA with adaptive power cells," Proc. IEEE RFIC Symp., 345-348, Seattle, WA, USA, 2013.

11. Kaymaksut, E. and P. Reynaert, "Transformer based uneven Doherty power amplifier in 90 nm CMOS for WLAN applications," IEEE J. Solid-State Circuits, Vol. 47, 1659-1671, 2012.
doi:10.1109/JSSC.2012.2191334

12. Yin, Y., X. Yu, Z. Wang, and B. Chi, "An efficiency-enhanced stacked 2.4-GHz CMOS power amplifier with mode switching scheme for WLAN applications," IEEE Trans. Microw. Theory Techn., Vol. 63, 672-682, 2015.
doi:10.1109/TMTT.2014.2387838

13. Jeong, G., S. Kang, T. Joo, and S. Hong, "An integrated dual-mode CMOS power amplifier with linearizing body network," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 64, 1037-1041, 2017.
doi:10.1109/TCSII.2016.2624302

14. Jin, Y. and S. Hong, "A 2.4-GHz CMOS common-gate combining power amplifier with load impedance adaptor," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 836-838, 2017.
doi:10.1109/LMWC.2017.2734748

15. Ahn, H., S. Baek, I. Nam, D. An, J. K. Lee, M. Jeong, B.-E. Kim, J. Choi, and O. Lee, "A fully integrated dual-mode CMOS power amplifier with an autotransformer-based parallel combining transformer," IEEE Microw. Wirel. Compon. Lett., Vol. 27, 833-835, 2017.
doi:10.1109/LMWC.2017.2734762

16. Yoo, J., C. Lee, I. Kang, and C. Park, "2.4-GHz CMOS linear power amplifier for IEEE 802.11n WLAN applications," Microw. Opt. Technol. Lett., Vol. 59, 546-550, 2017.
doi:10.1002/mop.30343