Vol. 84
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-20
Efficient Sparse Algorithm for Solving Multi-Objects Scattering Based on Compressive Sensing
By
Progress In Electromagnetics Research M, Vol. 84, 43-51, 2019
Abstract
To improve computational efficiency of traditional method for solving separable multi-objects scattering problems, each subdomain impedance matrix is sparsified by biorthogonal lifting wavelet transform (BLWT) without allocating auxiliary memory, and a sparse underdetermined equation is constructed by enjoying the prior knowledge from known excitation in wavelet domain, then orthogonal matching pursuit (OMP) is employed to fast and accurately solve the sparse underdetermined equation under compressive sensing (CS) framework. Numerical results of separable perfectly electric conduct (PEC) multi-objects are presented to show the efficiency of the proposed method.
Citation
Doudou Chai Yiying Wang , "Efficient Sparse Algorithm for Solving Multi-Objects Scattering Based on Compressive Sensing," Progress In Electromagnetics Research M, Vol. 84, 43-51, 2019.
doi:10.2528/PIERM19051205
http://www.jpier.org/PIERM/pier.php?paper=19051205
References

1. Stupfel, B., "A fast-domain decomposition method for the solution of electromagnetic scattering by large objects," IEEE Transactions on Antennas & Propagation, Vol. 44, No. 10, 1375-1385, 1996.
doi:10.1109/8.537332

2. Li, M. K. and C. C. Weng, "Multiscale simulation of complex structures using equivalence principle algorithm with high-order field point sampling scheme," IEEE Transactions on Antennas & Propagation, Vol. 56, No. 8, 2389-2397, 2008.
doi:10.1109/TAP.2008.926785

3. Chew, W. C., et al., Fast and Efficient Algorithms in Computational Electromagnetics, Artech House, 2002.

4. Peng, Z., X. C. Wang, and J. F. Lee, "Integral equation based domain decomposition method for solving electromagnetic wave scattering from non-penetrable objects," IEEE Transactions on Antennas & Propagation, Vol. 59, No. 9, 3328-3338, 2011.
doi:10.1109/TAP.2011.2161542

5. Hu, J., et al., "Domain decomposition method based on integral equation for solution of scattering from very thin conducting cavity," IEEE Transactions on Antennas & Propagation, Vol. 62, No. 10, 5344-5348, 2014.
doi:10.1109/TAP.2014.2341701

6. Zhao, R., et al., "EFIE-PMCHWT based domain decomposition method for solving electromagnetic scattering from complex dielectric/metallic composite objects," IEEE Antennas & Wireless Propagation Letters, 1293-1296, 2016.

7. Chen, M., X. Wu, W. Sha, and Z. Huang, "Fast frequency sweep scattering analysis for multiple PEC objects," Applied Computational Electromagnetics Society Journal, Vol. 22, No. 2, 250-253, 2007.

8. Cui, Z., et al., "A domain decomposition of the finite element-boundary integral method for scattering by multiple objects," Electromagnetics, Vol. 31, No. 7, 469-482, 2011.
doi:10.1080/02726343.2011.607087

9. Chen, M. S., F. L. Liu, H. M. Du, and X. L. Wu, "Compressive sensing for fast analysis of wide-angle monostatic scattering problems," IEEE Antennas & Wireless Propagation Letters, Vol. 10, No. 3, 1243-1246, 2011.
doi:10.1109/LAWP.2011.2174190

10. Chai, S. R. and L. X. Guo, "Compressive sensing for monostatic scattering from 3-D NURBS geometries," IEEE Transactions on Antennas & Propagation, Vol. 64, No. 8, 3545-3553, 2016.
doi:10.1109/TAP.2016.2580166

11. Cao, X. Y., et al., "Bilateral sparse transform for fast solving EM scattering problems by compressed sensing," IET Microwaves Antennas & Propagation, Vol. 11, No. 14, 2017.
doi:10.1049/iet-map.2016.1128

12. Kong, M., M. S. Chen, L. Zhang, and X. L. Wu, "Efficient solution to electromagnetic scattering problems of bodies of revolution by compressive sensing," Chinese Physics Letters, Vol. 33, No. 1, 136-139, 2016.
doi:10.1088/0256-307X/33/1/018402

13. Chai, S. R. and L. X. Guo, "Integration of CS into MoM for efficiently solving of bistatic scattering problems," IEEE Antennas & Wireless Propagation Letters, No. 15, 1771-1774, 2016.
doi:10.1109/LAWP.2016.2535143

14. Kong, M., M. S. Chen, B. Wu, and X. L. Wu, "Fast and stabilized algorithm for analyzing electromagnetic scattering problems of bodies of revolution by compressive sensing," IEEE Antennas & Wireless Propagation Letters, 198-201, 2016.

15. Tropp, J. A. and A. Gilbert, "Signal recovery from partial information by orthogonal matching pursuit," IEEE Trans. Inf. Theory, Vol. 53, No. 12, 4655-4667, 2007.
doi:10.1109/TIT.2007.909108

16. Chen, M. S., W. Sha, and X. L. Wu, "Solution of arbitrarily dimensional matrix equation in computational electromagnetics by fast lifting wavelet-like transform," International Journal of Numerical Methods in Engineering, Vol. 80, No. 8, 1124-1142, 2009.
doi:10.1002/nme.2673

17. Donoho, D. L., "Compressed sensing," IEEE Transactions on Information Theory, Vol. 52, No. 4, 1289-1306, 2006.
doi:10.1109/TIT.2006.871582