Vol. 83
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-07
Single-Fed High-Gain Circularly Polarized Microstrip Antenna
By
Progress In Electromagnetics Research M, Vol. 83, 151-159, 2019
Abstract
In this paper, a single-fed high-gain circularly polarized microstrip antenna is proposed. The circular polarization is obtained by two unequal-length arc-shaped radiation patches, which excites two orthogonal linearly polarized modes with a 90° phase difference. The antenna is excited by coaxial feed. The proposed circularly polarized antenna consists of two arc-shaped radiation patches and a ground plane, which has a simple structure and a higher gain than 10.0 dB. The antenna is fabricated and measured to verify the design. The measured results are in good agreements with the simulated ones. The measured results show that the impendenceb and width (IBW) for S11<-10 dB is 16.7% (3.78-4.47 GHz), and the axial-ratio bandwidth (ARBW) for AR<3 dB is 3.6% (4.09-4.24 GHz). Further, the gain from 4.09 to 4.24 GHz is higher than 10.0 dBi. The antenna radiation pattern performs well over the whole band, and the peak gain can reach 10.67 dBi at 4.11 GHz. It is a good candidate for advanced wireless communication systems.
Citation
Qing-Qing Chen Jian-Ying Li Guang-Wei Yang Yu-Xin Ding , "Single-Fed High-Gain Circularly Polarized Microstrip Antenna," Progress In Electromagnetics Research M, Vol. 83, 151-159, 2019.
doi:10.2528/PIERM19052002
http://www.jpier.org/PIERM/pier.php?paper=19052002
References

1. Xu, Y., S. Gong, and T. Hong, "Circularly polarized slot microstrip antenna for harmonic suppression," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 472-475, 2013.
doi:10.1109/LAWP.2013.2256334

2. Hong, T., S. Gong, Y. Liu, W. Jiang, and J. Du, "Miniaturized circularly polarized microstrip antenna by spirally slotted," 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), 585-586, Kuta, 2015.
doi:10.1109/APCAP.2015.7374496

3. Nasimuddin, X. Qing, and Z. N. Chen, "Circularly polarized ring-slotted-microstrip antenna," 2015 IEEE 4th Asia-Pacific Conference on Antennas and Propagation (APCAP), 203-204, Kuta, 2015.
doi:10.1109/APCAP.2015.7374335

4. Huo, X. Y., J. H. Wang, and M. E. Chen, "Circularly polarized microstrip antenna with two Asymmetric Circular slots for RFID application," 2013 IEEE International Conference on Microwave Technology & Computational Electromagnetics, 184-187, Qingdao, 2013.

5. Lin, Y., H. Chen, and S. Lin, "A new coupling mechanism for circularly polarized annular-ring patch antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 1, 11-16, Jan. 2008.
doi:10.1109/TAP.2007.912961

6. Yang, Y., J.-Y. Li, K. Wei, R. Xu, and G.-W. Yang, "Circularly polarised cut ring microstrip antenna," Electronics Letters, Vol. 51, No. 3, 199-200, 2015.
doi:10.1049/el.2014.3729

7. Li, R., Y. Guo, B. Zhang, and G. Du, "A miniaturized circularly polarized implantable annular-ring antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2566-2569, 2017.
doi:10.1109/LAWP.2017.2734246

8. Chen, Q., J. Li, G. Yang, B. Cao, and Z. Zhang, "A polarization-reconfigurable high-gain microstrip antenna," IEEE Transactions on Antennas and Propagation, Vol. 67, No. 5, 3461-3466, May 2019.
doi:10.1109/TAP.2019.2902750

9. Lam, K. Y., K. Luk, K. F. Lee, H. Wong, and K. B. Ng, "Small circularly polarized u-slot wideband patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 87-90, 2011.
doi:10.1109/LAWP.2011.2110631

10. Tong, K. and T. Wong, "Circularly polarized U-slot antenna," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 8, 2382-2385, Aug. 2007.
doi:10.1109/TAP.2007.901930

11. Lin, J. and Q. Chu, "Enhancing bandwidth of CP microstrip antenna by using parasitic patches in annular sector shapes to control electric field components," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 5, 924-927, May 2018.
doi:10.1109/LAWP.2018.2825236

12. Bilotti, F. and C. Vegni, "Design of high-performing microstrip receiving GPS antennas with multiple feeds," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 248-251, 2010.
doi:10.1109/LAWP.2010.2046874

13. Chen, X., G. Fu, S. Gong, Y. Yan, and W. Zhao, "Circularly polarized stacked annular-ring microstrip antenna with integrated feeding network for UHF RFID readers," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 542-545, 2010.
doi:10.1109/LAWP.2010.2051791

14. Zhang, B., Y. P. Zhang, D. Titz, F. Ferrero, and C. Luxey, "A circularly-polarized array antenna using linearly-polarized sub grid arrays for highly-integrated 60-GHz radio," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 1, 436-439, Jan. 2013.
doi:10.1109/TAP.2012.2214752

15. Altintas, O., E. Unal, O. Akgol, M. Karaaslan, and F. Karadag, "Design of a wide band metasurface as a linear to circular polarization converter," Modern Physics Letters B, Vol. 31, No. 30, 2017.
doi:10.1142/S0217984917502748

16. Akgol, O., O. Altintas, E. Unal, M. Karaaslan, and F. Karadag, "Linear to left- and right-hand circular polarization conversion by using a metasurface structure," International Journal of Microwave and Wireless Technologies, Vol. 10, No. 1, 133-138, 2018.
doi:10.1017/S1759078717001192

17. Akgol, O., E. Unal, O. Altintas, M. Karaaslan, and F. Karadag, "Design of metasurface polarization converter from linearly polarized signal to circularly polarized signal," OPTIK, Vol. 161, 12-19, 2018.
doi:10.1016/j.ijleo.2018.02.028

18., , HFSS version 14.0.1: High Frequency Structure Simulator Based on the Finite Element Method, [Online], Available: http://www.ansys.com.

19. Garg, R., P. Bhartia, I. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, 371-374, Artech House, Norwood, MA, USA, 2001.

20. Data Sheet of ROHDE&SCHWARZ ZVB20, , Application Note, [Online], Available: http://www.rohde-schwarz.com/.