Vol. 83
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-14
Electromagnetic Torque Ripple Minimization of Slotted Doubly-Salient-Permanent-Magnet Generator for Wind Turbine Applications
By
Progress In Electromagnetics Research M, Vol. 83, 181-190, 2019
Abstract
The aim of this work is to reduce the torque ripple of a low-speed/high-torque Doubly Salient Permanent Magnet (DSPM) generator for wind turbine applications. To do this, a combined design and control-based approaches are set up to improve the overall machine performance. The design-based approach helps to develop a form of small stator/rotor teeth combination, focusing on the shapes and dimensions of the teeth that will minimize torque ripple. On the other hand, in the second approach, a control technique is designed. It employs indirect torque control (Torque Sharing Function: TSF), including a PI-controller with gains adjusted continuously for regulating the reference current. The obtained results show that by combining these two approaches, the ripple rate of the electromagnetic torque for the studied DSPM is reduced to a minimum when the teeth shapes are trapezoidal in both the stator and rotor, and the command approach also allows an improvement in the total torque shape, such that the ripple rate decreases by about 96%.
Citation
Lemnouer Bekhouche Rachid Saou Cherif Guerroudj Abdellah Kouzou Mohamed El-Hadi Zaim , "Electromagnetic Torque Ripple Minimization of Slotted Doubly-Salient-Permanent-Magnet Generator for Wind Turbine Applications," Progress In Electromagnetics Research M, Vol. 83, 181-190, 2019.
doi:10.2528/PIERM19052804
http://www.jpier.org/PIERM/pier.php?paper=19052804
References

1. Moreau, L., M. Machmoum, and M. E. Zaïm, "Design of low-speed slotted switched reluctance machine for wind energy applications," Ele. Pow. Comp. and Sys., Vol. 34, No. 10, 1139-1156, 2006.
doi:10.1080/15325000600630376

2. Saou, R., M. E. Zaïm, and K. Alitouche, "Optimal designs and comparison of the doubly salient permanent magnet machine and flux-reversal machine in low-speed applications," Power Components Syst., Vol. 36, No. 9, 914-931, 2008.
doi:10.1080/15325000801960564

3. Saou, R., M. E. Zaïm, and K. Alitouche, "Modelling and design of a low speed flux reversal machine," J. Electr. Syst. 2009, Vol. 36, No. 9, 18-23, 2009.

4. Tarimer, I. and A. Sakar, "Effects of structural design of pole arc offset in a salient pole generator to obtaining sinusoidal voltages with the least harmonics," Przeglad Elektrotechniczny, Vol. 2010, No. 11a, 367-372, 2010.

5. Tarimer, I. and E. O. Yuzer, "Designing of a permanent magnet and directly driven synchronous generator for low speed turbines," Ele. and Electrical Eng., Vol. 6, No. 112, 15-18, 2011.

6. Rupar, U., F. Lahajnar, and P. Zajec, "Iterative-learning-based torque-ripple compensation in a transverse flux motor," IET Cont. Theo. App., Vol. 6, No. 3, 341-348, 2012.
doi:10.1049/iet-cta.2011.0051

7. Shi, U. C., D. C. Yon, C. W. Byung, D. K. Hong, and J. Y. Lee, "Design considerations and validation of permanent magnet vernier machine with consequent pole rotor for low speed servo applications," J. Electr. Eng. Technol., Vol. 8, No. 5, 1146-1151, 2013.
doi:10.5370/JEET.2013.8.5.1146

8. Topaloglu, I., C. Ocak, and I. Tarimer, "A case study of getting performance characteristics of a salient pole synchronous hydrogenerators," Elektronika ir Elektrotechnika, Vol. 97, No. 1, 57-61, 2015.

9. Guerroudj, C., R. Saou, A. Boulayoune, E. M. Zaïm, and L. Moreau, "Performance analysis of Vernier slotted doubly salient permanent magnet generator for wind power," Int. J. Hyd. Ene., Vol. 42, No. 13, 8744-8755, Mar. 30, 2017.
doi:10.1016/j.ijhydene.2016.07.043

10. Ocak, C., D. Uygun, and I. Tarimer, "FEM based multi-criterion design and implementation of a PM synchronous wind generator by fully coupled co-simulation," Adv. in Ele. and Comp. Eng., Vol. 18, 37-42, 2018.
doi:10.4316/AECE.2018.01005

11. Soong, W. L. and N. Ertugrul, "Field-weakening performance of interior permanent-magnet motors," IEEE Tran. on Indu. App., Vol. 38, No. 5, 1251-1258, 2002.
doi:10.1109/TIA.2002.803013

12. Sahin, C., A. E. Amac, M. Karacor, and A. Emadi, "Reducing torque ripple of switched reluctance machines by relocation of rotor moulding clinches," IET Ele. Pow. Appl., Vol. 6, No. 9, 753-760, 2012.
doi:10.1049/iet-epa.2011.0397

13. Guerroudj, C., R. Saou, F. Charpentier, and A. Boulayoune, "Optimal design of a novel doubly salient permanent magnet motors for high power ship propulsion," 2018 XIII ICEM, 2556-2562, IEEE, Alexandroupoli, 2018.

14. Jing, L. and J. Cheng, "Research on torque ripple optimization of switched reluctance motor based on finite element method," Progress In Electromagnetics Research M, Vol. 74, 115-123, 2018.
doi:10.2528/PIERM18071104

15. Massimo, B., P. Tomas, and F. Ivano, "Low-torque ripple design of a ferrite-assisted synchronous reluctance motor," IET Ele. Pow. App. Spec., Vol. 10, No. 5, 319-329, 2016.
doi:10.1049/iet-epa.2015.0248

16. Ketabi, A., A. Yadghar, and M. J. Navardi, "Torque and ripple improving of a SR motor using robust particle swarm optimization of drive current and dimension," Progress In Electromagnetics Research M, Vol. 45, 195-207, 2016.
doi:10.2528/PIERM15112207

17. Moreau, L., M. Machmoum, and M. E. Zaim, "Control and minimization of torque ripple in switched reluctance generator," Eur. Conf. Power Electron. Appl., 1-8, Dresden, 2005.

18. Xue, X. D., K. W. E. Cheng, and S. L. Ho, "A control scheme of torque ripple minimization for SRM drives based on flux linkage controller and torque sharing function," 2nd Int. Conf. Power Electron. Syst. Appl. ICPESA, 79-84, Hong Kong, 2006.

19. Gobbi, R. and K. Ramar, "Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors," IET Ele. Pow. App., Vol. 3, No. 5, 453-460, 2009.
doi:10.1049/iet-epa.2008.0191

20. Xia, Y. Y., J. E. Fletcher, S. J. Finney, K. H. Ahmed, and B. W. Williams, "Torque ripple analysis and reduction for wind energy conversion systems using uncontrolled rectifier and boost converter," IET Ren. Pow. Gen., Vol. 5, No. 5, 377-386, 2011.
doi:10.1049/iet-rpg.2010.0108

21. Hannoun, H., M. Hilairet, and C. Marchand, "High performance current control of a switched reluctance machine based on a gain-scheduling PI controller," Control Eng. Pract., Vol. 19, No. 11, 1377-1386, 2011.
doi:10.1016/j.conengprac.2011.07.011

22. Korkmaz, F., I. Topaloğlu, H. Mamur, M. Ari, and I. Tarimer, "Reduction of torque ripple in induction motor by artificial neural multinetworks," Turk. J. Elec. Eng. & Comp. Sci., Vol. 24, 3492-3502, 2016.
doi:10.3906/elk-1406-54

23. Milad, D., M. S. N. Seyed, and W. A. Jin, "Torque ripple minimization of switched reluctance motor using modified torque sharing function," 2013 21st Iran. Conf. Electr. Eng. ICEE 2013, 1-6, Mashhad, 2013.

24. Lange, T., B. Kerdsup, C. Weiss, and R. W. De Doncker, "Torque ripple reduction in reluctance synchronous machines using an asymmetric rotor structure," 7th IET Int. Conf. PEMD 2014, 1-5, Manchester, 2014.

25. Tahi, S., R. Ibtiouen, and S. Mekhtoub, "Performance optimization of synchronou reluctance machines with two rotor structures," ICEM 2014, 250-255, Berlin, 2014.