Vol. 84
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-20
Piezoelectric Transducer-Tuned Fourth-Order Microstrip Bandpass Filter with Cross-Coupling
By
Progress In Electromagnetics Research M, Vol. 84, 53-62, 2019
Abstract
This paper presents a piezoelectric transducer-tuned fourth-order bandpass filter (BPF). The proposed filter consists of four open-loop resonators which form cascaded quadruplet (CQ) sections with a capacitive cross coupling. There are two transmission zeros (TZs) in the lower and upper stopband to further improve the selectivity of the filter. The structure parameters are optimized by using High Frequency Structure Simulator (HFSS). The piezoelectric transducer (PET) together with a dielectric substrate is used as a tuning element. The effects of the PET on the coupling coefficient and external quality factor are analyzed. The designed tunable filter has been manufactured and measured. The measured results show that the center frequency of the filter changes from 2.48 GHz to 2.28 GHz; the insertion loss basically keeps constant; 3 dB bandwidth of the filter changes from 156 MHz to 168 MHz over the tuning range; and the positions of the TZs in the stopband move synchronously as the center frequency varies.
Citation
Liangzu Cao, Liya Wang, Jun-Mei Yan, and Lixia Yin, "Piezoelectric Transducer-Tuned Fourth-Order Microstrip Bandpass Filter with Cross-Coupling," Progress In Electromagnetics Research M, Vol. 84, 53-62, 2019.
doi:10.2528/PIERM19052910
References

1. Hong, J.-S., Microstrip Filters for RF/Microwave Applications, Wiley, New York, NY, USA, 2011.
doi:10.1002/9780470937297

2. Schuster, C., A. Wiens, F. Schmidt, et al. "Performance analysis of reconfigurable bandpass filters with continuously tunable center frequency and bandwidth," IEEE Transactions on Microwave Theory and Techniques, Vol. 65, No. 11, 4573-4584, 2017.
doi:10.1109/TMTT.2017.2742479

3. Cho, Y.-H. and G. M. Rebeiz, "Two- and four-pole tunable 0.7-1.1-GHz bandpass-to-bandstop filters with bandwidth control," IEEE Transactions on Microwave Theory and Techniques, Vol. 62, No. 3, 457-463, 2014.
doi:10.1109/TMTT.2014.2304360

4. Hao, S. and Q. J. Gu, "A Fourth order tunable capacitor coupled microstrip resonator band pass filter," 2015 IEEE Radio and Wireless Symposium (RWS), 2015.

5. Chiou, Y.-C. and G. M. Rebeiz, "Tunable 1.55-2.1 GHz 4-pole elliptic bandpass filter with bandwidth control and dB rejection for wireless systems," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 1, 117-124, 2013.
doi:10.1109/TMTT.2012.2227789

6. Stefanini, R., M. Chatras, and P. Blondy, "Compact 2-pole and 4-pole 1.5-0.9 GHz constant absolute bandwidth tunable filters," 2012 IEEE/MTT-S International Microwave Symposium Digest, 2012.

7. Cao, L., J. Yan, and L. Yin, "A compact tunable dielectric filter with constant absolute bandwidth," 2018 International Conference on Microwave and Millimeter Wave Technology (ICMMT), 1-3, 2018.

8. Jung, D., J. N. Hansen, and K. Chang, "Piezoelectric transducer-controlled tunable hairpin bandpass filter," Electronics Letters, Vol. 48, No. 8, 1-2, 2012.
doi:10.1049/el.2012.0182

9. Al-Ahmad, M., R. Maenner, R. Matz, et al. "Wide piezoelectric tuning of LTCC bandpass filters," IEEE MTT-S International Microwave Symposium Digest, 1-4, 2005.

10. Hsieh, L.-H. and K. Chang, "Tunable microstrip bandpass filters with two transmission zeros," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 2, 520-525, 2003.
doi:10.1109/TMTT.2002.807830

11. Cao, L.-Z. and L. X. Yin, "The implementation and design of piezoelectric transducer-tuned dielectric filter," Acta Electronica Sinica in Chinese, Vol. 45, No. 8, 1964-1969, 2017.

12. Cameron, R. J., "Advanced coupling matrix synthesis techniques for microwave filters," IEEE Transactions on Microwave Theory and Techniques, Vol. 51, No. 1, 1-10, 2003.
doi:10.1109/TMTT.2002.806937

13. Thomas Brian, J., "Cross-coupling in coaxial cavity filters - A tutorial overview," IEEE Transactions on Microwave and Techniques, Vol. 51, No. 4, 1368-1376, 2003.
doi:10.1109/TMTT.2003.809180