Vol. 84
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-25
Laser Systems for Distant Monitoring of Nanopowder Combustion
By
Progress In Electromagnetics Research M, Vol. 84, 85-93, 2019
Abstract
The paper discusses the application of laser illumination and brightness amplification techniques for studying the process of high-temperature combustion of aluminum and iron nanopowders and their mixtures. The laser equipment for visualization based on solid-state laser illuminator, brightness amplifier on copper bromide vapors and high-speed camera is considered. These approaches allow the increase of monitoring distance to 50 cm, which is important for high-temperature processes imaging. The video images allow studying the surface morphology changes during high-temperature combustion identifying the main stages of the combustion, spreading of the heat wave and cooling.
Citation
Lin Li Petr Alexandrovich Antipov Andrei Vladimirovich Mostovshchikov Alexander Petrovich Il'in Fedor Alexandrovich Gubarev , "Laser Systems for Distant Monitoring of Nanopowder Combustion," Progress In Electromagnetics Research M, Vol. 84, 85-93, 2019.
doi:10.2528/PIERM19060103
http://www.jpier.org/PIERM/pier.php?paper=19060103
References

1. Zarko, V. E. and A. A. Gromov, Energetic Nanomaterials: Synthesis, Characterization, and Application, Elsevier, Amsterdam, 2016.

2. Sundaram, D. S., V. Yang, and E. Zarko, "Combustion of nano aluminum particles (review)," Comb. Expl. Shock. Waves, Vol. 51, No. 2, 173-196, 2015.
doi:10.1134/S0010508215020045

3. Muthu Gnana Theresa Nathan, D., S. Jacob Melvin Boby, P. Basu, R. Mahesh, S. Harish, S. Joseph, and P. Sagayaraj, "One-pot hydrothermal preparation of Cu2O-CuO/rGO nanocomposites with enhanced electrochemical performance for supercapacitor applications," Appl. Surf. Sci., Vol. 449, 474-484, 2018.

4. Wilmański, A., M. Bućko, Z. Pedzich, and J. Szczerba, "Salt-assisted SHS synthesis of aluminium nitride powders for refractory applications," J. Mater. Sci. Chem. Eng., Vol. 2, No. 10, 26-31, 2014.

5. Jeong, T., K. H. Kim, S. J. Lee, S. H. Lee, S. R. Jeon, S. H. Lim, J. H. Baek, and J. K. Lee, "Aluminum nitride ceramic substrates-bonded vertical light-emitting diodes," IEEE Photon. Technol. Lett., Vol. 21, No. S3, 890-892, 2009.
doi:10.1109/LPT.2009.2020061

6. Hunt, W. H., "New directions in aluminum-based P/M materials for automotive applications," Int. J. Powd. Metal., Vol. 36, No. 6, 50-56, 2000.

7. Ilyin, A. P., L. O. Root, and A. V. Mostovshchikov, "Application of aluminum nanopowder for pure hydrogen production," Key Eng. Mater., Vol. 712, 261-266, 2016.
doi:10.4028/www.scientific.net/KEM.712.261

8. Tan, W. S., V. Bousquet, M. Kauer, K. Takahashi, and J. Heffernan, "InGaN-based blue-violet laser diodes using AlN as the electrical insulator," Jpn. J. Appl. Phys., Vol. 48, No. 7R, 072102, 2009.
doi:10.1143/JJAP.48.072102

9. Aruna, S. T. and A. S. Mukasyan, "Combustion synthesis and nanomaterials," Curr. Opin. Solid State Mater. Sci., Vol. 12, 44-50, 2008.
doi:10.1016/j.cossms.2008.12.002

10. Li, L., A. P. Ilyin, F. A. Gubarev, A. V. Mostovshchikov, and M. S. Klenovskii, "Study of self-propagating high-temperature synthesis of aluminium nitride using a laser monitor," Ceram. Int., Vol. 44, No. 16, 19800-19808, 2018.
doi:10.1016/j.ceramint.2018.07.237

11. Gubarev, F. A., M. S. Klenovskii, L. Li, A. V. Mostovshchikov, and A. P. Ilyin, "High-speed visualization of nanopowder combustion in air," Opt. Pura Apl., Vol. 51, No. 4, 51003:1-7, 2018.
doi:10.7149/OPA.51.4.51003

12. Gubarev, F. A., A. V. Mostovshchikov, M. S. Klenovskii, A. P. Il'in, and L. Li, "Copper bromide laser monitor for combustion processes visualization," 2016 Progress In Electromagnetic Research Symposium (PIERS), 2666-2670, Shanghai, China, August 8-11, 2016.

13. McNesby, K. L., B. E. Homan, R. A. Benjamin, V. M. Boyle, J. M. Densmore, and M. M. Biss, "Invited article: Quantitative imaging of explosions with high-speed cameras," Rev. Sci. Instrum., Vol. 87, No. 5, 051301, 2016.
doi:10.1063/1.4949520

14. Abdel-Hafez, A. A., M. W. Brodt, J. R. Carney, and J. M. Lightstone, "Laser dispersion and ignition of metal fuel particles," Rev. Sci. Instrum., Vol. 82, No. 6, 064101, 2011.
doi:10.1063/1.3598341

15. Chen, Y., D. R. Guildenbecher, K. N. G. Hoffmeister, M. A.Cooper, H. L. Stauffacher, M. S.Oliver, and E. B. Washburn, "Study of aluminum particle combustion in solid propellant plumes using digital in-line holography and imaging pyrometry," Combust. Flame, Vol. 82, 225-237, 2017.
doi:10.1016/j.combustflame.2017.04.016

16. Plantier, K. B., M. L. Pantoya, and A. E. Gash, "Combustion wave speeds of nanocomposite Al/Fe2O3: The effects of Fe2O3 particle synthesis technique," Combust. Flame, Vol. 140, No. 4, 299-309, 2005.
doi:10.1016/j.combustflame.2004.10.009

17. Lynch, P., G. Fiore, H. Krier, and N. Glumac, "Gas-phase reaction in nanoaluminum combustion," Combust. Sci. Technol., Vol. 182, No. 7, 842-857, 2010.
doi:10.1080/00102200903341561

18. Little, C. E., Metal Vapor Lasers: Physics, Engineering and Applications, John Willey & Sons Ltd., Chichester, 1999.

19. Kazaryan, M. A., V. M. Batenin, V. V. Buchanov, A. M. Boichenko, I. I. Klimovskii, and E. I. Molodykh, High Brightness Metal Vapor Lasers: Physics and Applications, CRC Press, 2017.

20. Withford, M. J., D. J. W. Brown, R. P. Mildren, R. J. Carman, G. D. Marshall, and J. A. Piper, "Advances in copper laser technology: Kinetic enhancement," Prog. Quant. Electron., Vol. 28, No. 3-4, 165-196, 2004.
doi:10.1016/j.pquantelec.2003.12.001

21. Biswal, R., G. K. Mishra, P. K. Agrawal, S. V. Nakhe, and S. K. Dixit, "Studies on the spectral purity of copper-hydrogen bromide laser radiations," Appl. Opt., Vol. 52, No. 14, 3269-3278, 2013.
doi:10.1364/AO.52.003269

22. Gubarev, F. A., L. Li, M. S. Klenovskii, and D. V. Shiyanov, "Spatial-temporal gain distribution of a CuBr vapor brightness amplifier," Appl. Phys. B, Vol. 122, 284, 2016.
doi:10.1007/s00340-016-6559-9

23. Nekhoroshev, V. O., V. F. Fedorov, G. S. Evtushenko, and S. N. Torgaev, "Copper bromide vapour laser with a pulse repetition rate up to 700 kHz," Quantum Electron., Vol. 42, No. 10, 877-879, 2012.
doi:10.1070/QE2012v042n10ABEH014897

24. Gubarev, F. A., V. F. Fedorov, K. V. Fedorov, D. V. Shiyanov, and G. S. Evtushenko, "Copper bromide vapour laser with an output pulse duration of up to 320 ns," Quantum Electron., Vol. 46, No. 1, 57-60, 2016.
doi:10.1070/QE2016v046n01ABEH015707

25. Astadjov, D. N., K. D. Dimitrov, D. R. Jones, V. K. Kirkov, C. E. Little, N. V. Sabotinov, and N. K. Vuchkov, "Copper bromide laser of 120 W average output power," IEEE J. Quantum Electron., Vol. 33, No. 5, 705-709, 1997.
doi:10.1109/3.572143

26. Skripnichenko, A. S., A. N. Soldatov, and N. A. Yudin, "Method of two-pulse frequency regulation of copper-vapor laser parameters," J. Russ. Las. Res., Vol. 16, No. 2, 134-137, 1995.
doi:10.1007/BF02580866

27. Petrash, G. G., Optical Systems with Brightness Amplifiers, Nauka, Moscow, 1991.

28. Buzhinsky, R. O., V. V. Savransky, K. I. Zemskov, A. A. Isaev, and O. I. Buzhinsky, "Observation of objects under intense plasma background illumination," Plasma Phys. Rep., Vol. 36, No. 13, 1269-1271, 2010.
doi:10.1134/S1063780X10130295

29. Abramov, D. V., S. M. Arakelian, A. F. Galkin, I. I. Klimovskii, A. O. Kucherik, and V. G. Prokoshev, "On the possibility of studying the temporal evolution of a surface relief directly during exposure to high-power radiation," Quantum Electron., Vol. 36, No. 6, 569-575, 2006.
doi:10.1070/QE2006v036n06ABEH006579

30. Kuznetsov, A. P., R. O. Buzhinskij, K. L. Gubskii, A. S. Savjolov, S. A. Sarantsev, and A. N. Terekhin, "Visualization of plasma-induced processes by a projection system with a Cu-laser-based brightness amplifier," Plasma Phys. Rep., Vol. 36, No. 5, 428-437, 2010.
doi:10.1134/S1063780X10050090

31. Gubarev, F. A., M. S. Klenovskii, and L. Li, "A mirror based scheme laser projection microscope," IOP Conf. Series: Materials Science and Engineering, Vol. 81, 012016, 2016.
doi:10.1088/1757-899X/124/1/012016

32. Mironov, E. G., Z. Li, H. T. Hattori, K. Vora, H. H. Tan, and C. Jagadish, "Titanium nano-antenna for high-power pulsed operation," J. Lightwave Technol., Vol. 31, No. 15, 2459-2466, 2013.
doi:10.1109/JLT.2013.2261281