Vol. 84
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-19
Optimum Design of Homopolar Radial Two-Degree-of-Freedom Hybrid Magnetic Bearing
By
Progress In Electromagnetics Research M, Vol. 84, 31-41, 2019
Abstract
Optimization design is a satisfactory way to improve the performance of magnetic bearing (MB). In this paper, a multi-objective genetic particle algorithm of swarm optimization (GAPSO) is proposed for homopolar permanent magnet biased magnetic bearings (HPRMBs). By assigning different inertia weights to each objective function, the multi-objective function is transformed into a new single objective function for optimization. In order to ensure the diversity of particles in the optimization process, genetic algorithm is used to cross-mutate them, which enhances the global search ability of particle swarm optimization. After optimization with GAPSO, the levitating force of the MB is increased by 22.3%, the volume decreased by 26.6%, and the loss reduced by 33.9%. The optimization results show that the multi-objective optimization based on GAPSO can effectively improve the performance of HPRMB.
Citation
Shengjing Yin Fengxiao Huang Yukun Sun Ye Yuan Yonghong Huang Chi Chen , "Optimum Design of Homopolar Radial Two-Degree-of-Freedom Hybrid Magnetic Bearing," Progress In Electromagnetics Research M, Vol. 84, 31-41, 2019.
doi:10.2528/PIERM19061701
http://www.jpier.org/PIERM/pier.php?paper=19061701
References

1. Huang, Z., et al., "Loss calculation and thermal analysis of rotors supported by active magnetic bearings for high-speed permanent-magnet electrical machines," IEEE Transactions on Industrial Electronics, Vol. 63, No. 4, 2027-2035, 2016.

2. Zad, H. S., T. I. Khan, and I. Lazoglu, "Design and adaptive sliding mode control of hybrid magnetic bearings," IEEE Transactions on Industrial Electronics, Vol. 65, No. 3, 2537-2547, 2018.
doi:10.1109/TIE.2017.2739682

3. Yuan, Y., et al., "Magnetic force numerical analysis of auxiliary bearings in optimized flywheel storage system," Electric Machines and Control, Vol. 20, No. 7, 95-101, 2016.

4. Han, B., et al., "Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application," IEEE Transactions on Magnetics, Vol. 48, No. 6, 1959-1966, 2012.
doi:10.1109/TMAG.2011.2180731

5. Nguyen, T. D. and G. Foo, "Sensorless control of a dual-airgap axial flux permanent magnet machine for flywheel energy storage system," IET Electric Power Applications, Vol. 7, No. 2, 140-149, 2013.
doi:10.1049/iet-epa.2012.0048

6. Han, B., et al., "Modeling and analysis of coupling performance between passive magnetic bearing and hybrid magnetic radial bearing for magnetically suspended flywheel," IEEE Transactions on Magnetics, Vol. 49, No. 10, 5356-5370, 2013.
doi:10.1109/TMAG.2013.2263284

7. Zong, M., X. K. Wang, and Y. Cao, "Permanent magnet biased bearing of suspension system," Advanced Materials Research, Vol. 383-390, 5529-5535, 2011.
doi:10.4028/www.scientific.net/AMR.383-390.5529

8. Han, B., S. Zheng, and H. Li, "Design and analysis of a two-axis-magnetic bearing with permanent magnet bias for magnetically suspended reaction wheel," International Conference on Seventh International Conference on Intelligent System & Knowledge Engineering, 2014.

9. Zhilichev, Y., "Analysis of a magnetic bearing pair with a permanent magnet excitation," IEEE Transactions on Magnetics, Vol. 36, No. 5, 3690-3692, 2000.
doi:10.1109/20.908942

10. Mitterhofer, H., W. Gruber, and W. Amrhein, "On the high speed capacity of bearingless drives," IEEE Transactions on Industrial Electronics, Vol. 61, No. 6, 3119-3126, 2014.
doi:10.1109/TIE.2013.2272281

11. Betschon, F., Design Principles of Integrated Magnetic Bearings, Swiss Federal Inst. Technol., Zurich, Switzerland, 2000.

12. Li, Z., H. Zhu, and X. Z, "Research on control system model of single degree of freedom hybrid magnetic bearing," Journal of Nanjing University of Aeronautics & Astronautics, Vol. 6, 685-690, 1998.

13. Wu, L., et al., "Analytical model of radial permanent magnet biased magnetic bearing with assist poles," IEEE Transactions on Applied Superconductivity, Vol. 26, No. 7, 1-5, 2016.

14. Moser, R., J. Sandtner, and H. Bleuler, "Optimization of repulsive passive magnetic bearings," IEEE Transactions on Magnetics, Vol. 42, No. 8, 2038-2042, 2006.
doi:10.1109/TMAG.2005.861160

15. Zeisberger, M., T. Habisreuther, D. Litzkendorf, O. Surzhenko, R. Muller, and W. Gawalek, "Optimization of levitation forces in superconducting magnetic bearings," IEEE Trans. Appl. Supercond., Vol. 11, No. 1, 1741-1744, Mar. 2001.
doi:10.1109/77.920120

16. Sahinkaya, M. N. and A. E. Hartavi, "Variable bias current in magnetic bearings for energy optimization," IEEE Transactions on Magnetics, Vol. 43, No. 3, 1052-1060, Mar. 2007.
doi:10.1109/TMAG.2006.888731

17. Shelke, S. and R. V. Chalam, "Optimum energy loss in electromagnetic bearing," Proc. 3rd Int. Conf. Electron. Comput. Technol. (ICECT), 374-379, Kanyakumari, Tamil Nadu, Apr. 8-10, 2011.

18. Rao, J. S. and R. Tiwari, "Optimum design and analysis of axial hybrid magnetic bearings using multi-objective genetic algorithms," International Journal for Computational Methods in Engineering Science & Mechanics, 2012.

19. Liu, X. and B. Han, "The multiobjective optimal design of a two-degree-of-freedom hybrid magnetic bearing," IEEE Transactions on Magnetics, Vol. 50, No. 9, 1-14, 2014.
doi:10.1109/TMAG.2014.2313315

20. Han, B., Q. Xu, and Q. Yuan, "Multiobjective optimization of a combined radial-axial magnetic bearing for magnetically suspended compressor," IEEE Transactions on Industrial Electronics, Vol. 63, No. 4, 2284-2293, 2016.

21. Kennedy, J. and R. Eberhaa, "Particle swarm optimization," IEEE Int. Confon. Neural Networks, 1942-1948, IEEE, Perth, USA, 1995.

22. Pichot, M. A., et al., "Active magnetic bearings for energy storage systems for combat vehicles," IEEE Transactions on Magnetics, Vol. 37, No. 1, 318-323, 2001.
doi:10.1109/20.911846