Vol. 83
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-08-15
A Low Bias Current Integral Type Optimal Control Scheme for a Hybrid Magnetic Bearing
By
Progress In Electromagnetics Research M, Vol. 83, 203-211, 2019
Abstract
This paper presents an application of integral type optimal control scheme for rotor positioning of a hybrid magnetic bearing (HMB) in one degree of freedom (1-DOF) using low bias current. It is observed that higher biasing current enhances the linearity and disturbance rejection capability but at a cost of higher copper loss in the actuator. So, selection of biasing in an HMB system is very crucial. In the proposed scheme the dc biasing current can be varied by adjusting the axial offset to the rotor magnet. Analysis has been conducted to achieve the optimal biasing current for better performance of the HMB. A prototype of the HMB system has been fabricated and tested which represents quite satisfactory axial vibration characteristics under low biasing current.
Citation
Subhankar Pusti Tapan Santra Debabrata Roy , "A Low Bias Current Integral Type Optimal Control Scheme for a Hybrid Magnetic Bearing," Progress In Electromagnetics Research M, Vol. 83, 203-211, 2019.
doi:10.2528/PIERM19061903
http://www.jpier.org/PIERM/pier.php?paper=19061903
References

1. Chen, L., et al., "Internal model control for the AMB high-speed fly wheel rotor system based on modal separation and inverse system method," IET Electric Power Applications, Vol. 13, No. 3, 349-358, 2019.
doi:10.1049/iet-epa.2018.5646

2. Ohji, T., et al., "Structure of one-axis controlled repulsive type magnetic bearing system with surface permanent magnets installed and its levitation and rotation tests," IEEE Trans. on Magnetics, Vol. 47, No. 12, 4734-4739, 2011.
doi:10.1109/TMAG.2011.2160403

3. Han, B., S. Zheng, X. Wang, and Q. Yuan, "Integral design and analysis of passive magnetic bearing and active radial magnetic bearing for agile satellite application," IEEE Transaction on Magnetics, Vol. 48, No. 6, 1959-1966, 2017.

4. Santra, T., D. Roy, A. B. Choudhury, and S. Yamada, "Vibration control of a hybrid magnetic bearing using an adaptive sliding mode technique," Journal of Vibration and Control, Vol. 24, No. 10, 1848-1860, 2018.
doi:10.1177/1077546317717884

5. Wei, C. and D. Söffker, "Optimization strategy for PID controller design of AMB rotor system," IEEE Transaction on Control System Technology, Vol. 24, No. 3, 788-803, 2016.
doi:10.1109/TCST.2015.2476780

6. Komorii, M. and N. Akinagar, "A prototype of flywheel ebergy storage system suppressed by hybrid magnetic bearing with H/sup/spl infin/controller," IEEE Transactions on Applied Super Conductivity, Vol. 11, No. 1, 1733-1736, 2001.
doi:10.1109/77.920118

7. Santra, T., D. Roy, and A. B. Choudhury, "Calculation of passive magnetic force in a radial magnetic bearing using general division approach," Progress In Electromagnetics Research M, Vol. 54, No. 1, 91-102, 2017.
doi:10.2528/PIERM16120602

8. Santra, T., D. Roy, and S. Yamada, "Calculation of force between two ring magnets using adaptive monte carlo technique with experimental verification," Progress In Electromagnetic Research M, Vol. 49, No. 1, 181-193, 2016.
doi:10.2528/PIERM16052101