Vol. 85
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-20
A High-Swing Class-C VCO with Amplitude Feedback Loop for Low Phase Noise and Robust Start-Up
By
Progress In Electromagnetics Research M, Vol. 85, 125-134, 2019
Abstract
A novel high-swing Class-C VCO with an amplitude feedback loop is presented. The amplitude feedback loop is used to ensure the start-up of the VCO which also makes the proposed VCO always have an optimal phase noise against the PVT variations automatically. The proposed circuit is implemented in a 65 nm CMOS process. The VCO has exhibited a measured phase noise of -128.6 dBc/Hz at 1 MHz offset from the 1.52 GHz carrier frequency with a 1.4 mW power consumption. The variation of measured phase noise at 1 MHz offset is less than 2.3% while temperature changes from -40˚C to 100˚C.
Citation
Qi Liu, Ye-Bing Gan, and Tian-Chun Ye, "A High-Swing Class-C VCO with Amplitude Feedback Loop for Low Phase Noise and Robust Start-Up," Progress In Electromagnetics Research M, Vol. 85, 125-134, 2019.
doi:10.2528/PIERM19071803
References

1. Mazzanti, A. and P. Andreani, "Class-C harmonic CMOS VCOs, with a general result on phase noise," IEEE J. Solid-State Circuits, Vol. 43, 2716, 2008, DOI: 10.1109/JSSC.2008.2004867.
doi:10.1109/JSSC.2008.2004867

2. Chen, J., et al. "A low power, startup ensured and constant amplitude Class-C VCO in 0.18 μm CMOS," IEEE Microwave & Wireless Components Letters, Vol. 21, 427, 2011, DOI: 10.1109/LMWC.2011.2160620.
doi:10.1109/LMWC.2011.2160620

3. Fanori, L. and P. Andreani, "Highly efficient Class-C CMOS VCOs, including a comparison with class-B VCOs," IEEE J. Solid-State Circuits, Vol. 48, 1730, 2013, DOI: 10.1109/JSSC.2013.2253402.
doi:10.1109/JSSC.2013.2253402

4. Perticaroli, S., et al. "A harmonic Class-C CMOS VCO-based on low frequency feedback loop: Theoretical analysis and experimental results," IEEE Trans. Circuits Syst. I, Reg. Papers, Vol. 61, 2537, 2014, DOI: 10.1109/TCSI.2014.2332268.
doi:10.1109/TCSI.2014.2332268

5. Zhu, Z., et al. "A startup robust feedback Class-C VCO with constant amplitude control in 0.18 μm CMOS," IEEE Microwave & Wireless Components Letters, Vol. 25, 541, 2015, DOI: 10.1109/LMWC.2015.2440871.
doi:10.1109/LMWC.2015.2440871

6. Li, C. and A. Liscidini, "Class-C PA-VCO cell for FSK and GFSK transmitters," IEEE J. Solid-State Circuits, Vol. 51, 1537, 2016, DOI: 10.1109/JSSC.2016.2554148.
doi:10.1109/JSSC.2016.2554148

7. Song, J. H., et al. "An adaptively biased Class-C VCO with a self-turn-off auxiliary Class-B pair for fast and robust startup," IEEE Microwave & Wireless Components Letters, Vol. 26, 34, 2016, DOI: 10.1109/LMWC.2015.2505637.
doi:10.1109/LMWC.2015.2505637

8. Leeson, D. B., "A simple model of feedback oscillator noise spectrum," Proceedings of the IEEE, Vol. 54, 329, 1966, DOI: 10.1109/PROC.1966.4682.
doi:10.1109/PROC.1966.4682

9. Tohidian, M., et al. "High-swing Class-C VCO," ESSCIRC, 495, 2011, DOI: 10.1109/ESS-CIRC.2011.6045015.

10. Ataei, F. and M. Yavari, "A 2.2 GHz high-swing Class-C VCO with wide tuning range," MWSCAS, 1, 2011, DOI: 10.1109/MWSCAS.2011.6026276.

11. Fanori, L. and P. Andreani, "A high-swing complementary Class-C VCO," ESSCIRC, 407, 2013, DOI: 10.1109/ESSCIRC.2013.6649159.

12. Jansen, S., et al. "Silicon bipolar VCO family for 1.1 to 2.2 GHz with fully-integrated tank and tuning circuits," ISSCC Dig. Tech. Papers, 392, 1997, DOI: 10.1109/ISSCC.1997.585455.

13. Kim, J., et al. "A wide-band CMOS LC VCO with linearized coarse tuning characteristics," IEEE Trans. Circuits Syst. II, Exp. Briefs, Vol. 55, 399, 2008, DOI: 10.1109/TCSII.2007.914896.
doi:10.1109/TCSII.2007.914896

14. Li, X., et al. "New design method of LC VCO improving PVT tolerance of phase noise," Chinese Journal of Electronics, Vol. 24, 550, 2015, DOI: 10.1049/cje.2015.07.019.
doi:10.1049/cje.2015.07.019

15. Yang, X., et al. "An ultra-low-voltage Class-C PMOS VCO IC with PVT compensation in 180-nm CMOS," IEEE 16th Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems (2016), 107, 2016, DOI: 10.1109/SIRF.2016.7445482.
doi:10.1109/SIRF.2016.7445482