Vol. 85
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-09-29
A Dual-Layer Microstrip Patch Antenna with Stub Designed by Simulated Annealing Algorithm for Circular Polarization
By
Progress In Electromagnetics Research M, Vol. 85, 155-164, 2019
Abstract
In this paper, a design method that employs simulated annealing (SA) algorithm to create stub structure of a dual-layer microstrip patch antenna for circular polarization is presented. Firstly, based on established controls of SA algorithm, a series of stub structures have been created automatically on the stacked parasitic element - (Split Ring Resonator) SRR of antenna. The desired stub structure is chosen according to the generation of orthogonal modes that produce circular polarization through the electromagnetic coupling to the driven patch with an SRR-shaped slot. Then, a dual-layer microstrip patch antenna with a Z-shaped stub and left-hand circularly polarized (LHCP) characteristic is obtained by employing the assisted design. The designed antenna is simulated, optimized, fabricated, and measured. The results show that the microstrip patch antenna with Z-shaped stub has a simulated minimum axial ratio of 1.64 dB at 2.4 GHz, and the measured peak gain can be up to 5.87 dBi.
Citation
Li Guo, and Zhiqiang Yao, "A Dual-Layer Microstrip Patch Antenna with Stub Designed by Simulated Annealing Algorithm for Circular Polarization," Progress In Electromagnetics Research M, Vol. 85, 155-164, 2019.
doi:10.2528/PIERM19071805
References

1. Tseng, L. Y. and T. Y. Han, "An evolutionary design method using genetic local search algorithm to obtain broad/dual-band characteristics for circular polarization slot antennas," IEEE Trans. Antennas Propag., Vol. 58, No. 5, 1449-1456, 2010.
doi:10.1109/TAP.2010.2044312

2. Diego, F. M., S. S. Eduardo, and C. N. Daniel, "Circularly polarised rectangular microstrip antenna design with arbitrary input impedance," IET Microwaves Antennas Propag., Vol. 12, No. 9, 1532-1540, 2018.
doi:10.1049/iet-map.2017.1171

3. Yang, W. W., J. Y. Zhou, Z. Q. Yu, and L. S. Li, "Single-fed low profile broadband circularly polarized stacked patch antenna," IEEE Trans. Antennas Propag., Vol. 62, No. 10, 5406-5410, 2014.
doi:10.1109/TAP.2014.2344657

4. Liu, Z. X., L. Zhu, and X. Zhang, "A low-profile and high-gain CP patch antenna with improved AR bandwidth via perturbed ring resonator," IEEE Antennas Wirel. Propag. Lett., Vol. 18, No. 2, 397-401, 2019.
doi:10.1109/LAWP.2019.2892097

5. Hanieh, A., A. Abdolali, C. Alessandra, M. Diego, M. Rashid, and M. Pedram, "ANN-based design of a versatile millimetrewave slotted patch multi-antenna configuration for 5G scenarios," IET Microwaves Antennas Propag., Vol. 11, No. 9, 1288-1295, 2017.
doi:10.1049/iet-map.2016.0987

6. Yao, Z., J. Huang, S. Wang, and R. Ruby, "Efficient local optimisation-based approach for non-convex and non-smooth source localisation problems," IET Radar, Sonar & Navigation, Vol. 11, No. 7, 1051-1054, 2017.
doi:10.1049/iet-rsn.2016.0433

7. Seo, D. C. and Y. Sung, "Stacked open-loop square ring antenna for circular polarization operation," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 835-838, 2015.
doi:10.1109/LAWP.2014.2380358

8. Sung, Y., "Stub-loaded square-ring antenna for circular polarization applications," Journal of Electromagnetic Waves and Applications, Vol. 30, No. 11, 1465-1473, 2016.
doi:10.1080/09205071.2016.1202788

9. Sharma, V., B. Sharma, V. K. Saxena, K. B. Sharma, M. M. Sharma, and D. Bhatnagar, "Circularly polarized stacked square patch microstrip antenna with tuning stubs," Indian Antenna Week, Kolkata, India, December 18-22, 2011.

10. Coleman, C. M., E. J. Rothwell, and J. E. Ross, "Investigation of simulated annealing, ant-colony optimization, and genetic algorithms for self-structuring antennas," IEEE Trans. Antennas Propag., Vol. 52, No. 4, 1007-1014, 2004.
doi:10.1109/TAP.2004.825658

11. Deb, A., J. S. Roy, and B. Gupta, "Performance comparison of differential evolution, particle swarm optimization and genetic algorithm in the design of circularly polarized microstrip antennas," IEEE Trans. Antennas Propag., Vol. 62, No. 8, 3920-3928, 2014.
doi:10.1109/TAP.2014.2322880

12. Chang, L., C. Liao, W. Lin, L.-L. Chen, and X. Zheng, "A hybrid method based on differential evolution and continuous ant colony optimization and its application on wideband antenna design," Progress In Electromagnetics Research, Vol. 122, 105-108, 2012.
doi:10.2528/PIER11092207

13. Rattan, M., M. S. Patterh, and B. S. Sohi, "Optimization of circular antenna arrays of isotropic radiators using simulated annealing," Int. J. Microw. Wirel. Technol., Vol. 1, No. 5, 441-446, 2009.
doi:10.1017/S1759078709990687

14. Jauhri, A., J. D. Lohn, and D. S. Linden, "A comparison of antenna placement algorithms," Companion Publ. Genet. Evol. Comput. Conf., Vancouver, BC, Canada, July 12-16, 2014.

15. Abri, M., N. Boukli-Hacene, and F. T. Bendimerad, "Application of the simulated annealing to the synthesis of ring printed antennas arrays," Ann. Telecommun., Vol. 60, No. 11-12, 1422-1438, 2005.

16. Suman, B. and P. Kumar, "A survey of simulated annealing as a tool for single and multiobjective optimization," J. Oper. Res. Soc., Vol. 37, No. 10, 1143-1160, 2006.
doi:10.1057/palgrave.jors.2602068