Vol. 86
Latest Volume
All Volumes
PIERM 127 [2024] PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-10-23
Thermal Characteristics Analysis of Single-Winding Bearingless Switched Reluctance Motor
By
Progress In Electromagnetics Research M, Vol. 86, 59-69, 2019
Abstract
Loss and temperature rise are important parameters for performance evaluation of bearingless switched reluctance machine. In this paper, a 12/8 outer-rotor single-winding bearingless switched reluctance motor (SWBSRM) is studied for its loss and temperature rise under high speed operation. Firstly, a 2D finite element model is established by using Ansoft Maxwell, and the magnetic flux density waveform and the variation law of different parts of the core are obtained. Furthermore, various losses including core loss and copper loss are coupled to the temperature field analysis module as a heat source. Thirdly, the thermal model is established by Motor-CAD, and the transient and stable temperature field is simulated and analyzed. Finally, the temperature field distributions of the core and windings are obtained.
Citation
Yonghong Huang, Fengxiao Huang, Ying Zhang, Chi Chen, Ye Yuan, and Jianhua Luo, "Thermal Characteristics Analysis of Single-Winding Bearingless Switched Reluctance Motor," Progress In Electromagnetics Research M, Vol. 86, 59-69, 2019.
doi:10.2528/PIERM19072305
References

1. Chen, L. and W. Hofmann, "Speed regulation technique of one bearingless 8/6 switched reluctance motor with simpler single winding structure," IEEE Transactions on Industrial Electronics, Vol. 59, No. 6, 2592-2600, 2012.
doi:10.1109/TIE.2011.2163289

2. Zhang, J., H. Wang, L. Chen, et al. "Multi-objective optimal design of bearingless switched reluctance motor based on multi-objective genetic particle swarm optimizer," IEEE Transactions on Magnetics, Vol. 54, No. 1, 1-3, 2018.
doi:10.1109/TMAG.2017.2751546

3. Sun, Y., Y. Yuan, and Y. Huang, "Design and analysis of bearingless flywheel motor specially for flywheel energy storage," Electronics Letters, Vol. 52, No. 1, 66-68, 2016.
doi:10.1049/el.2015.2334

4. Sun, Y., Y. Huang, and Y. Yuan, "Radial force dynamic current compensation method of single winding bearingless flywheel motor," IET Power Electronics, Vol. 8, No. 7, 1224-1229, 2015.
doi:10.1049/iet-pel.2014.0502

5. Garcia-Amoros, J., P. Andrada, B. Blanque, et al. "Influence of design parameters in the optimization of linear switched reluctance motor under thermal constraints," IEEE Transactions on Industrial Electronics, Vol. 65, No. 2, 1875-1883, 2018.
doi:10.1109/TIE.2017.2686361

6. Toda, H., K. Senda, S. Morimoto, et al. "Influence of various non-oriented electrical steels on motor efficiency and iron loss in switched reluctance motor," IEEE Transactions on Magnetics, Vol. 49, No. 7, 3850-3853, 2013.
doi:10.1109/TMAG.2013.2242195

7. Yan, W., H. Chen, X. Liu, et al. "Design and multi-objective optimisation of switched reluctance machine with iron loss," IET Electric Power Applications, Vol. 13, No. 4, 435-444, 2019.
doi:10.1049/iet-epa.2018.5699

8. Chen, H., Y. Xu, and H. C. Iu, "Analysis of temperature distribution in power converter for switched reluctance motor drive," IEEE Transactions on Magnetics, Vol. 48, No. 2, 991-994, 2012.
doi:10.1109/TMAG.2011.2174968

9. Dev, C. M., A. Firdausa, K. Gaurav, et al. "Design methodology for a special single winding based bearingless switched reluctance motor," The Journal of Engineering, Vol. 2017, No. 7, 274-284, 2017.

10. Cao, X., H. Yang, L. Zhang, et al. "Compensation strategy of levitation forces for single-winding bearingless switched reluctance motor with one winding total short-circuited," IEEE Transactions on Industrial Electronics, Vol. 63, No. 9, 5534-5546, 2016.
doi:10.1109/TIE.2016.2558482

11. Liu, J., X. Zhang, H. Wang, et al. "Iron loss characteristic for the novel bearingless switched reluctance motor," 2013 International Conference on Electrical Machines and Systems (ICEMS), 586-591, IEEE, 2013.

12. Yu, Q., B. Bilgin, and A. Emadi, "Loss and efficiency analysis of switched reluctance machines using a new calculation method," IEEE Transactions on Industrial Electronics, Vol. 62, No. 5, 3072-3080, 2015.
doi:10.1109/TIE.2015.2392716

13. Al Eit, M., P. Dular, and F. Bouillault, "Perturbation finite element method for efficient copper losses calculation in switched reluctance machines," IEEE Transactions on Magnetics, Vol. 53, No. 6, 7202004, 2017.
doi:10.1109/TMAG.2017.2655339

14. Sun, Y., B. Zhang, Y. Yuan, and F. Yang, "Thermal characteristics of switched reluctance motor under different working conditions," Progress In Electromagnetics Research M, Vol. 74, 11-23, 2018.
doi:10.2528/PIERM18071301

15. Kasprzak, M., et al. "Thermal analysis of a three-phase 24/16 switched reluctance machine used in HEVs," IEEE Energy Conversion Congress and Exposition, 1-7, 2017.

16. Raulin, V., A. Radun, and I. Husain, "Modeling of losses in switched reluctance machines," IEEE Transactions on Industry Applications, Vol. 40, No. 6, 1560-1569, 2004.
doi:10.1109/TIA.2004.836225

17. Boivie, J., "Iron loss model and measurements of the losses in a switched reluctance motor," International Conference on Electrical Machines & Drives, IET, 219-222, 1993.