Vol. 88
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2019-12-27
A New Analytical Method for Studying Higher Order Modes of a Two-Wire Transmission Line
By
Progress In Electromagnetics Research M, Vol. 88, 11-20, 2020
Abstract
Regarding the increasing application of terahertz technology, the interest in using two-wire waveguides is getting more and more popular due to their favorable propagation properties. Therefore, a more accurate analysis of these structures is very important. In this paper, a simple analysis of the guided waves in a two-wire waveguide based on Bipolar Coordinate System (BCS) has been investigated. The structure under study is two infinite perfect electric conductor (PEC) cylinders in z direction, whose axes are positioned at a distance d from each other. The solution of TE and TM modes is sought by the aid of electromagnetic formulation, and an analytical expression is proposed for electromagnetic fields and cutoff wave numbers, which have not been present in any of the previous studies. In this study, for the first time a BCS has been used to formulate two-wire waveguide problem, and the validity range of the answer is discussed. The values of the cutoff wave numbers are calculated for the first few modes of TE and TM, using both the proposed method and Finite Difference Method (FDM). The precise correspondence of the obtained values with the proposed method with those of FDM, along with the high speed and simplicity in implementation, introduces the present method as an appropriate candidate for analyzing transmission lines using parallel cylinders.
Citation
Mehdi Gholizadeh Farrokh Hojjat-Kashani , "A New Analytical Method for Studying Higher Order Modes of a Two-Wire Transmission Line," Progress In Electromagnetics Research M, Vol. 88, 11-20, 2020.
doi:10.2528/PIERM19082005
http://www.jpier.org/PIERM/pier.php?paper=19082005
References

1. Mbonye, M. K., V. Astley, W. L. Chan, J. A. Deibel, and D. M. Mittleman, "A THz dual wire waveguide," Conf. Lasers Electro-Optics (p. CThLL1). Opt. Soc. Am., 2007.

2. Zhong, R. B., M. Hu, Y. Zhang, and S. G. Liu, "Theoretical study on dual-wire waveguide," Infrared, Millimeter, THz Waves, 2009. IRMMW-THz 2009. 34th Int. Conf. (1-2). IEEE, 2009, DOI: 10.1109/ICIMW.2009.5324777.

3. Mbonye, M., R. Mendis, and D. Mittleman, "A THz two-wire waveguide with low bending loss," Appl. Phys. Lett., Vol. 95, 233506, 2009.
doi:10.1063/1.3268790

4. Pahlevaninezhad, H. and T. E. Darcie, "Coupling of THz waves to a two-wire waveguide," Opt. Express, Vol. 18, No. 22, 22614-22624, 2010.
doi:10.1364/OE.18.022614

5. Pahlevaninezhad, H., T. Darcie, and B. Heshmat, "Two-wire waveguide for THz," Opt. Express, Vol. 18, 7415-7420, 2010.
doi:10.1364/OE.18.007415

6. Dickason, J. and K. W. Goosen, "Loss analysis for a two wire optical waveguide for chip-to-chip communication," Opt. Express, Vol. 21, 5226-5232, 2013.
doi:10.1364/OE.21.005226

7. Markov, A. and M. Skorobogatiy, "Two-wire THz fibers with porous dielectric support," Opt. Express, Vol. 21, No. 10, 12728-43, May 2013.
doi:10.1364/OE.21.012728

8. Gao, H., Q. Cao, D. Teng, M. Zhu, and K. Wang, "Perturbative solution for THz two-wire metallic waveguides with different radii," Opt. Express, Vol. 23, No. 21, 27457-73, Oct. 19, 2015.

9. Hinds, E. A., C. J. Vale, and M. G. Boshier, "Two-wire waveguide and interferometer for cold atoms," Physical Review Letters, Vol. 86, No. 8, 1462, Feb. 19, 2001.
doi:10.1103/PhysRevLett.86.1462

10. Markov, A., H. Guerboukha, and M. Skorobogatiy, "Hybrid metal wire-dielectric THz waveguides: Challenges and opportunities," JOSA B, Vol. 31, No. 11, 2587-600, Nov. 1, 2014.
doi:10.1364/JOSAB.31.002587

11. Teng, D., Q. Cao, S. Li, and H. Gao, "Tapered dual elliptical plasmon waveguides as highly efficient THz connectors between approximate plate waveguides and two-wire waveguides," JOSA A, Vol. 31, No. 2, 268-73, Feb. 1, 2014.
doi:10.1364/JOSAA.31.000268

12. Markov, A., G. Yan, and M. Skorobogatiy, "Low-loss THz waveguide Bragg grating using a twowire waveguide and a paper grating," Infrared, Millimeter, THz waves (IRMMW-THz), 2014 39th Int. Conf. on. IEEE, Vol. 38, No. 16, 3089-3092, 2014.

13. Mridha, M. K., et al., "Active THz two-wire waveguides," Opt. Express, Vol. 22, No. 19, 22340, 2014.
doi:10.1364/OE.22.022340

14. Zha, J., G. J. Kim, and T. I. Jeon, "Enhanced THz guiding properties of curved two-wire lines," Opt. Express, Vol. 24, No. 6, 6136-44, Mar. 21, 2016.
doi:10.1364/OE.24.006136

15. Schelkunoff, A. S., Electromagnetic-Waves, 1943.

16. Lee, K. S. H., "Two parallel terminated conductors in external fields," IEEE Trans. Electromagn. Compat., Vol. 20, No. 2, 288-296, 1978.
doi:10.1109/TEMC.1978.303721

17. Leviatan, Y. and A. Adams, "The response of a two-wire transmission line to incident field and voltage excitation, including the effects of higher order modes," IEEE Trans. Antennas Propag., Vol. 30, No. 5, 998-1003, Sep. 1982.
doi:10.1109/TAP.1982.1142893

18. Paul, C. R., Analysis of Multiconductor Transmission Lines, 2nd Edition, John Wiley & Sons, 2008.

19. Tannouri, P., M. Peccianti, P. L. Lavertu, F. Vidal, and R. Morandotti, "Quasi-TEM mode propagation in twin-wire THz waveguides," Chin. Opt. Lett., Vol. 09, 110013, 2011.
doi:10.3788/COL201109.110013

20. Das, B. N. and O. J. Vargheese, "Analysis of dominant and higher order modes for transmission lines using parallel cylinders," IEEE Trans. Microw. Theory Tech., Vol. 42, No. 4, 681-683, 1994.
doi:10.1109/22.285078

21. Zhong, R., J. Zhou, W. Liu, and S. Liu, "Theoretical investigation of a THz transmission line in bipolar coordinate system," Sci. China Inf. Sci., Vol. 55, No. 1, 35-42, Jan. 2012.
doi:10.1007/s11432-011-4488-0

22. Gholizadeh, M., M. Baharian, and F. H. Kashani, "A simple analysis for obtaining cutoff wavenumbers of an eccentric circular metallic waveguide in bipolar coordinate system," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 3, 837-844, Mar. 2019.
doi:10.1109/TMTT.2018.2890598

23. Zhou, J., M. Chen, R. Zhong, and S. Liu, "Analysis of TM and TE modes in eccentric coaxial lines based on bipolar coordinate system," Applied Computational Electromagnetics Society Journal, Vol. 30, No. 12, 2015.