Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-01-01

Anomalous Extinction Efficiency of Two Dimensional Particles in the Visible

By Sharhabeel Alyones, Charles W. Bruce, and Michael Granado
Progress In Electromagnetics Research M, Vol. 88, 45-52, 2020
doi:10.2528/PIERM19101003

Abstract

In this article we theoretically investigate the visible extinction efficiency that can be obtained using a two dimensional particle. We show that extinction efficiencies up to the upper limit can be obtained from two dimensional particles (thin circular disks or flakes) compared with one dimensional (fibers) and three dimensional particles (spheres). Features of the theory of electromagnetic extinction by thin circular disks are thoroughly investigated for wide size and material contents parameters in the visible. The results of this article are of importance for the search of efficient aerosol attenuative candidates in the visible spectral region.

Citation


Sharhabeel Alyones, Charles W. Bruce, and Michael Granado, "Anomalous Extinction Efficiency of Two Dimensional Particles in the Visible," Progress In Electromagnetics Research M, Vol. 88, 45-52, 2020.
doi:10.2528/PIERM19101003
http://www.jpier.org/PIERM/pier.php?paper=19101003

References


    1. Waterman, P. C., "Scattering, absorption, and extinction by thin fibers," J. Opt. Soc. Am. A, Vol. 22, 2430, 2005.
    doi:10.1364/JOSAA.22.002430

    2. Alyones, S., C. W. Bruce, and A. K. Buin, "Numerical methods for solving the problem of electromagnetic scattering by a thin finite conducting wire," IEEE Trans. Antennas Propag., Vol. 55, 1856, 2007.
    doi:10.1109/TAP.2007.898579

    3. Alyones, S. and C. W. Bruce, "Electromagnetic scattering and absorption by randomly oriented fibers," J. Opt. Soc. A, Vol. 32, 6, 2015.
    doi:10.1364/JOSAA.32.001101

    4. Jain, P. K., K. S. Lee, I. H. El-Sayed, and M. A. El-Sayed, "Plasmon coupling in nanorod assemblies: Optical absorption, discrete dipole approximation simulation, and exciton-coupling model," J. Phys. Chem. B, Vol. 110, 7238, 2006.
    doi:10.1021/jp057170o

    5. Lee, K. S. and M. A. El-Sayed, "Dependence of the enhanced optical scattering efficiency relative to that of absorption for gold metal nanorods on aspect ratio, size, end-cap shape, and medium refractive index," J. Phys. Chem. B, Vol. 109, 20331, 2005.
    doi:10.1021/jp054385p

    6. Chang, W. S., J. W. Ha, L. S. Slaughter, and S. Link, "Plasmonic nanorod absorbers as orientation sensors," Proc. Natl. Acad. Sci., Vol. 107, 2781, USA, 2010.
    doi:10.1073/pnas.0910127107

    7. Bruce, C. W. and S. Alyones, "Extinction efficiencies for metallic fibers in the infrared," Appl. Opt., Vol. 48, 5095, 2009.
    doi:10.1364/AO.48.005095

    8. Bruce, C. W. and S. Alyones, "Visible and infrared optical properties of stacked cone graphite microtubes," Appl. Opt., Vol. 51, 3250, 2012.
    doi:10.1364/AO.51.003250

    9. Bruce, C. W., A. V. Jelinek, S. Wu, S. Alyones, and Q. S. Wang, "Millimeter-wavelength investigation of fibrous aerosol absorption and scattering properties," Appl. Opt., Vol. 43, 6648, 2004.
    doi:10.1364/AO.43.006648

    10. Gurton, K. P. and C. W. Bruce, "Parametric study of the absorption cross-section for a moderately conducting thin cylinder," Appl. Opt., Vol. 34, 2822, 1995.
    doi:10.1364/AO.34.002822

    11. Jelinek, A. V. and C.W. Bruce, "Extinction spectra of high-conductivity fibrous aerosols," J. Appl. Phys., Vol. 78, 2675, 1995.
    doi:10.1063/1.360129

    12. Hart, M. and C. W. Bruce, "Backscatter measurements of thin nickel-coated graphite fibers," IEEE Trans. Antennas Propag., Vol. 48, 842, 2000.
    doi:10.1109/8.855506

    13. Willis, T. M. and H.Weil, "Disk scattering and absorption by an improved computational method," Appl. Opt., Vol. 26, 18, 1987.
    doi:10.1364/AO.26.003987

    14. Hanarp, P., M. Kall, and D. S. Sutherland, "Optical properties of short range ordered arrays of nanometer gold disks prepared by colloidal lithography," J. Phys. Chem. B, Vol. 107, 5768, 2003.
    doi:10.1021/jp027562k

    15. Li, N., Q. Zhang, S. Quinlivan, J. Goebl, Y. Gan, and Y. Yin, "H2O2-aided seed-mediated synthesis of silver nanoplates with improved yield and efficiency," Chem. Phys. Chem., Vol. 13, No. 10, 2526-2530, 2012.
    doi:10.1002/cphc.201101018

    16. Langhammer, C., Z. Yuan, and I. Zoric B. Kasemo, "Plasmonic properties of supported Pt and Pd nanostructures," Nano Lett., Vol. 6, 833, 2006.
    doi:10.1021/nl060219x

    17. Anquillare, E. L., O. D. Miller, C. W. Hsu, B. G. DeLacy, J. D. Joannopoulos, S. G. Johnson, and M. Soljacic, "Efficient, designable, and broad-bandwidth optical extinction via aspect-ratio-tailored silver nanodisks," Optics Express, Vol. 24, No. 10, 10806, 2016.
    doi:10.1364/OE.24.010806

    18. Shepherd, J. W. and A. R. Holt, "The scattering of electromagnetic-radiation from finite dielectric circular-cylinder," J. Phys. A, Vol. 16, 65, 1983.

    19. DeVore, R., D. B. Hodge, and R. G. Kouyoumjian, "Backscattering cross sections of circular disks for arbitrary incidence," J. Appl. Phys., Vol. 42, 3075, 1971.
    doi:10.1063/1.1660688

    20. Le Vine, D. M., A. Schneider, R. H. Lang, and H. G. Carter, "Scattering from thin dielectric disks," IEEE Trans. Antennas. Propag., Vol. 33, 1410, 1985.
    doi:10.1109/TAP.1985.1143534

    21. Venner, M. J. and C. W. Bruce, "Absorption cross section of moderately conducting disks at 35 GHz," Appl. Opt., Vol. 37, No. 30, 7143, 1998.
    doi:10.1364/AO.37.007143

    22. Mie, G., Annalen der Physik, Vol. 330, No. 3, 377, 1908.

    23. Bohren, F. C. and D. R. Huffmann, Absorption and Scattering of Light by Small Particles, Wiley- Interscience, New York, 2010.

    24. Van de Hulst, H. C., "Light Scattering by Small Particles," John Wiley and Sons, New York, 1957.

    25. Gustafsson, M., C. Sohl, and G. Kristensson, "On the spectral efficiency of a sphere," Proc. R. Soc. A, Vol. 463, 2589, 2007.
    doi:10.1098/rspa.2007.1893

    26. Qiu, W., B. G. Delacy, S. G. Johnson, J. D. Joannopoulos, and M. Soljacic, "Optimization of broadband optical response of multilayer nanospheres," Opt. Express, Vol. 20, 18494, 2012.
    doi:10.1364/OE.20.018494

    27. Miller, O. D., A. G. Polimeridis, M. T. H. Reid, C. W. Hsu, B. G. Delacy, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, "Fundamental limits to optical response in absorptive systems," Optics Express, Vol. 24, No. 4, 2016.
    doi:10.1364/OE.24.003329

    28. Miller, O. D., C. W. Hsu, M. T. H. Reid, W. Qiu, B. G. DeLacy, J. D. Joannopoulos, M. Soljacic, and S. G. Johnson, "Fundamental limits to extinction by metallic nanoparticles," Physical Review Letters, Vol. 112, 123903, 2014.
    doi:10.1103/PhysRevLett.112.123903

    29. Hlaing, M., B. Gebear-Eigzabher, A. Roa, A. Marcano, D. Radu, and C.-Y. Lai, "Absorption and scattering cross-section extinction values of silver nanoparticles," Optical Materials, Vol. 58, 439-444, 2016.
    doi:10.1016/j.optmat.2016.06.013

    30. Kuznetsov, A. I., A. E. Miroshnichenko, M. L. Brongersma, Y. S. Kivshar, and B. Luk’yanchuk, "Optically resonant dielectric nanostructures," Science, Vol. 354, 2472, 2016.
    doi:10.1126/science.aag2472

    31., Optical Constants of Bulk Materials and Films, Adam Hilger, 1988.

    32. Ordal, M. A., L. L. Long, R. J. Bell, S. E. Bell, R. R. Bell, R. W. Alexander, Jr., and C. A. Ward, "Optical properties of the metals Al, Co, Cu, Au, Fe, Pb, Ni, Pd, Pt, Ag, Ti, and W in the infrared and far infrared," Applied Optics, Vol. 22, No. 7, 1099, 1983.
    doi:10.1364/AO.22.001099

    33., , https://refractiveindex.info/Aspnes and Studna 1983.