Vol. 88
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-16
Performance Prediction of Bundle Double-Walled Carbon Nanotube-Composite Materials for Dipole Antennas at Terahertz Frequency Range
By
Progress In Electromagnetics Research M, Vol. 88, 179-189, 2020
Abstract
In this paper, the double-walled carbon nanotube composite material (DWCNTs-composite) and bundle of DWCNT-composite material (CB-DWCNTs) for antenna applications at terahertz frequency range are presented and investigated. The mathematical modeling and analysis of DWCNTs-composite material is presented for the purpose of modelling and simulation approach. The bundle of DWCNTs-composite material is constructed and designed, based on this modeling approach. The DWCNT-composite material consists of double-walled carbon nanotube coated by a thin jacket of another different material. The dependency of the electrical conductivity of B-DWCNTs-composite on the different parameters is presented and investigated. The performance evaluation of B-DWCNTs-composite and CB-DWCNTs materials are presented based on their electromagnetic properties. For this purpose, the dipole antennas of these composite materials are designed and implemented using CST (MWS), where the cross sections of B-DWCNTs-composite and CB-DWCNT materials are circular geometry. Furthermore, comparative studies are performed to show the dependency of size and frequency of the DWCNT-composite material. The results obtained from the DWCNTs-composite and CB-DWCNTs dipole antennas are presented based on S11 parameters, resonant frequency, gain, bandwidth, and efficiency.
Citation
Yaseen Naser Jurn Sawsen Abdulhadi Mahmood Imad Qasim Habeeb , "Performance Prediction of Bundle Double-Walled Carbon Nanotube-Composite Materials for Dipole Antennas at Terahertz Frequency Range," Progress In Electromagnetics Research M, Vol. 88, 179-189, 2020.
doi:10.2528/PIERM19101604
http://www.jpier.org/PIERM/pier.php?paper=19101604
References

1. Burke, P., C. Rutherglen, and Z. Yu, "Carbon nanotube antennas," Proceedings of Joint 9th International Conference on Electromagnetics in Advanced Applications, 937-940, Torino, Italy, 2005.

2. Hanson, G. W., "Fundamental transmitting properties of carbon nanotube antennas," IEEE Transactions on Antennas and Propagation, Vol. 53, No. 11, 3426-3435, 2005.
doi:10.1109/TAP.2005.858865

3. Jurn, Y. N., M. F. Malek, and W.-W. Liu, "Investigation of single-wall carbon nanotubes at THz antenna," ICED Conference, 415-420, Malaysia, 2014.

4. Jurn, Y. N., M. F. Malek, and W.-W. Liu, "Investigation of single-wall carbon nanotubes at THz antenna," Malaysia International Conference on Communications (MICC), 246-251, Malaysia, 2015.

5. Jurn, Y. N., M. F. Malek, and W.-W. Liu, "A 60 GHz single-walled carbon nanotube composite material for dipole antenna applications," Malaysia International Conference on Communications (MICC), 323-328, Malaysia, 2015.

6. Jurn, Y. N., M. F. B. A. Malek, and H. A. Rahim, "Mathematical analysis and modeling of singlewalled carbon nanotube composite material for antenna applications," Progress In Electromagnetics Research M, Vol. 45, 59-71, 2016.
doi:10.2528/PIERM15091702

7. Jurn, Y. N., M. F. Abdul Malek, and H. A. Rahim, "Carbon nanotubes composite materials for dipole antennas at terahertz range," Progress In Electromagnetics Research M, Vol. 66, 11-18, 2018.

8. Jurn, Y. N., M. F. Malek, and W.-W. Liu, "Important parameters analysis of the single-walled carbon nanotubes composite materials," ARPN Journal of Engineering and Applied Sciences, Vol. 11, No. 8, 5108-5113, 2016.

9. Jurn, Y. N., M. F. Malek, and W.-W. Liu, "An investigation of single-walled carbon nanotubes bundle dipole antenna at THz frequencies," IEEE International Conference on Control System Computing and Engineering, 565-570, 2014.

10. Jurn, Y. N., M. F. Malek, and Sawsen A. Mahmood, "Performance evaluation of the electromagnetic behavior of the bundle SWCNTs with circular geometry," CONECCT Conference, 1-6, India, 2015.

11. Jurn, Y. N., M. F. Malek, and Sawsen A. Mahmood, "Modelling and simulation of rectangular bundle of single-walled carbon nanotubes for antenna applications," Journal of Key Engineering Materials, Vol. 701, 57-66, 2016.
doi:10.4028/www.scientific.net/KEM.701.57

12. Jurn, Y. N., M. F. Malek, and Sawsen A. Mahmood, "Electromagnetic modelling of bundle of single-walled carbon nanotubes with circular geometry for antenna applications," ACES Journal, Vol. 32, No. 6, 531-541, 2017.

13. Huang, Y., W. Y. Yin, and Q. H. Liu, "Performance prediction of carbon nanotube bundle dipole antennas," IEEE Transactions on Nanotechnology, Vol. 7, No. 3, 331-337, 2008.
doi:10.1109/TNANO.2007.915017

14. Choi, S. and K. Sarabandi, "Performance assessment of bundled carbon nanotube for antenna applications at terahertz frequencies and higher," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 3, 802-809, 2011.
doi:10.1109/TAP.2010.2103023

15. Hanson, G. W. and J. Hao, "Infrared and optical properties of carbon nanotube dipole antennas," IEEE Transactions on Nanotechnology, Vol. 5, No. 6, 766-775, 2006.
doi:10.1109/TNANO.2006.883475

16. Mehdipour, A., I. D. Rosca, A. R. Sebak, W. Christophe, and S. V. Hoa, "Full-Composite fractal antenna using carbon nanotubes for multiband wireless applications," IEEE Antennas and Wireless Propagation, Vol. 9, 891-894, 2010.
doi:10.1109/LAWP.2010.2076342

17. Mehdipour, A., I. D. Rosca, A. R. Sebak, W. Christophe, and S. V. Hoa, "Carbon nanotube composites for wideband millimeter-wave antenna applications," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 10, 3572-3578, 2011.
doi:10.1109/TAP.2011.2163755

18. Aissa, B., M. Nedil, M. Habib, and D. Therriault, "Fluidic patch antenna based on liquid metal alloy/single-wall carbon-nanotube operating at the S-band frequency," Applied Physics Letters, Vol. 103, No. 5, 063101-1-063101-5, 2013.

19. Alvarez, N. T., T. Ochmann, N. Kienzle, B. Ruff, M. R. Haase, T. Hopkins, S. Pixley, D. Mast, M. J. Schulz, and V. Shanov, "Polymer coating of carbon nanotube fibers for electric microcables," Nanomaterials, Vol. 4, 879-893, 2014.
doi:10.3390/nano4040879

20. Hanium Marmia, K. and T. Mieno, "Production and properties of carbon nanotube/cellulose composite paper," Journal of Nanomaterials, Article ID 6745029, pages 11, 2017.

21. Amram Bengio, E., D. Senic, L. W. Taylor, R. J. Headrick, M. King, P. Chen, C. A. Little, J. Ladbury, C. J. Long, C. L. Holloway, A. Babakhani, J. C. Booth, N. D. Orloff, and M. Pasquali, "Carbon nanotube thin film patch antennas for wireless communications," Appl. Phys. Lett., Vol. 114, 203102-1-203102-5, 2019.

22. Fujisawa, K., H. J. Kim, H. Muramatsu, T. Hayashi, T. C. Hirschmann, M. S. Dresselhaus, Y. A. Kim, and P. T. Araujo, "A review of double-walled and triple-walled carbon nanotube synthesis and applications," Appl. Sci., Vol. 6, No. 109, 1-32, 2016.

23. Maeng, I., C. Kang, S. J. Oh, and J.-H. Sonb, "Terahertz electrical and optical characteristics of double-walled carbon nanotubes and their comparison with single-walled carbon nanotubes," Applied Physics Letters, Vol. 90, 051914 (1-3), 2007.

24. Hanson, G. W. and J. A. Berres, "Multiwall carbon nanotubes at RF-THz frequencies: Scattering, shielding, effective conductivity, and power dissipation," IEEE Transactions on Antennas and Propagation, Vol. 59, No. 8, 3098-3103, 2011.
doi:10.1109/TAP.2011.2158951

25. Jurn, Y. N., M. F. Malek, and H. A. Rahim, "Performance assessment of the simulation modeling approach of SWCNT at THz and GHz antenna applications," IEEE 12th Malaysia International Conference on Communications (MICC), 246-251, 2015.