Vol. 88
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-03
Computation of Electric and Magnetic Field Distribution Inside a Multilayer Cylindrical Conductor
By
Progress In Electromagnetics Research M, Vol. 88, 53-63, 2020
Abstract
In this paper, a numerical algorithm for computation of electric and magnetic fields inside a multilayer cylindrical structure with an arbitrary number of homogeneous layers is presented. Each layer can have arbitrary value of electrical conductivity, permeability and permittivity. Theoretical background of the model is based on Maxwell equations where modified Bessel functions have been chosen for solution formulas. Modified Bessel functions are also scaled to avoid underflow/overflow issues. This results in a numerically robust and highly accurate numerical algorithm for computation of electric and magnetic fields inside a multilayer conductor. Using the derived expression for electric field on the surface of the conductor, the formula for per-unit-length internal impedance of the general multilayer cylindrical conductor is also obtained.
Citation
Slavko Vujević Dino Lovrić Ivan Krolo Ilijana Duvnjak , "Computation of Electric and Magnetic Field Distribution Inside a Multilayer Cylindrical Conductor," Progress In Electromagnetics Research M, Vol. 88, 53-63, 2020.
doi:10.2528/PIERM19101702
http://www.jpier.org/PIERM/pier.php?paper=19101702
References

1. Schelkunoff, S. A., "The electromagnetic theory of coaxial transmission lines and cylindrical shields," Bell System Technical Journal, 532-578, 1934.
doi:10.1002/j.1538-7305.1934.tb00679.x

2. Semlyen, A. and A. Deri, "Time domain modeling of frequency dependent three phase transmission line impedance," IEEE Transactions on Power Apparatus and Systems, Vol. 104, No. 6, 1549-1555, 1985.
doi:10.1109/TPAS.1985.319171

3. Wedepohl, L. M. and D. J. Wilcox, "Transient analysis of underground power transmission systems: System-model and wave propagation characteristics," IEE Proceedings on Generation, Transmission and Distribution, Vol. 20, No. 2, 253-260, 1973.

4. Vujevic, S., V. Boras, and P. Sarajcev, "A novel algorithm for internal impedance computation of solid and tubular cylindrical conductors," International Review of Electrical Engineering (IREE), Vol. 4, No. 6, Part B, 1418-1425, 2009.

5. Mingli, W. and F. Yu, "Numerical calculations of internal impedance of solid and tubular cylindrical conductors under large parameters," IEE Proceedings — Generation, Transmission and Distribution, Vol. 151, No. 1, 67-72, 2004.
doi:10.1049/ip-gtd:20030981

6. Vujevic, S. and D. Lovric, "High-accurate numerical computation of internal impedance of cylindrical conductors for complex arguments of arbitrary magnitude," IEEE Transactions on Electromagnetic Compatibility, Vol. 56, No. 6, 1431-1438, 2014.
doi:10.1109/TEMC.2014.2352398

7. Lovric, D. and S. Vujevic, "Accurate computation of internal impedance of two-layer cylindrical conductors for arguments of arbitrary magnitude," IEEE Transactions on Electromagnetic Compatibility, Vol. 60, No. 2, 347-353, 2018.
doi:10.1109/TEMC.2017.2715985

8. Vujevic, S., T. Modric, and B. Vukic, "Internal impedance of two-layer cylindrical conductors," International Review of Electrical Engineering (I.R.E.E.), Vol. 9, No. 1, 235-243, 2014.

9. Brandao Faria, J. A., "A circuit approach for the electromagnetic analysis of inhomogeneous cylindrical structures," Progress In Electromagnetics Research B, Vol. 30, 223-238, 2011.
doi:10.2528/PIERB11040105

10. Brandao Faria, J. A. M., "A matrix approach for the evaluation of the internal impedance of multilayered cylindrical structures," Progress In Electromagnetics Research B, Vol. 28, 351-367, 2011.
doi:10.2528/PIERB11021505

11. Kubiczek, K. and M. Kampik, "Highly accurate and numerically stable matrix computations of the internal impedance of multilayer cylindrical conductors," IEEE Transactions on Electromagnetic Compatibility, Early access, doi: 10.1109/TEMC.2018.2890447.

12. Stratton, J. A., Electromagnetic Theory, John Wiley & Sons, New Jersey, 2007.

13. Jeffrey, A. and H.-H. Dai, Handbook of Mathematical Formulas and Integrals, 4th Edition, Elsevier, Amsterdam, 2008.

14. Abramowitz, M. and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Dover Publications, New York, 1964.