Vol. 90
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-02-19
Terahertz Beam Splitter Based on I-Shaped Metasurface
By
Progress In Electromagnetics Research M, Vol. 90, 27-35, 2020
Abstract
A linear polarization beam splitter operating in terahertz band is proposed and experimentally verified in this paper. The unit cell of beam splitter is composed of the top ``I'' type metal pattern, the middle dielectric layer, and the bottom metal layer. Each subarray structure of the device consists of four unit cells that rotate progressively at an angle of 45˚. The horizontal and vertical sub-arrays form the gradient metasurface of 4×4. The incident linear polarized terahertz wave is reflected by the device and divided into four beams with approximately equal power, while having different propagating directions in the 0.18-0.30 THz band. The proposed terahertz beam splitter has the advantages of small size, low cost, and easy processing, and it can be applied to terahertz stealth and terahertz imaging.
Citation
Wu Pan Xueyin Wang Qi Chen Xinyu Ren Yong Ma , "Terahertz Beam Splitter Based on I-Shaped Metasurface," Progress In Electromagnetics Research M, Vol. 90, 27-35, 2020.
doi:10.2528/PIERM19102804
http://www.jpier.org/PIERM/pier.php?paper=19102804
References

1. Li, J. S., D. G. Xu, and J. Q. Yao, "Compact terahertz wave polarizing beam splitter," Applied Optics, Vol. 49, No. 24, 4494-4497, 2010.
doi:10.1364/AO.49.004494

2. Gao, X., et al., "Ultra-wideband surface plasmonic Y-splitter," Optics Express, Vol. 23, No. 18, 23270-23277, 2015.
doi:10.1364/OE.23.023270

3. Rizea, A., "Design technique for all-dielectric non-polarizing beam splitter plate," Opto-Electronics Review, Vol. 20, No. 1, 96-99, 2012.
doi:10.2478/s11772-012-0012-3

4. Berry, C. W., J. Moore, and M. Jarrahi, "Design of reconfigurable metallic slits for terahertz beam modulation," Optics Express, Vol. 19, No. 2, 1236-1245, 2011.
doi:10.1364/OE.19.001236

5. Berry, C. W. and M. Jarrahi, "Broadband terahertz polarizing beam splitter on a polymer substrate," Journal of Infrared, Millimeter and Terahertz Waves, Vol. 33, No. 2, 127-130, 2012.
doi:10.1007/s10762-011-9858-6

6. Guo, W. L., et al., "A novel broadband gradient metasurface," Journal of Microwaves, Vol. 32, No. 3, 51-54, 2016.

7. Yu, N., et al., "A broadband, background-free quarter-wave plate based on plasmonic metasurfaces," Nano Letters, Vol. 12, No. 12, 6328-6333, 2012.
doi:10.1021/nl303445u

8. Grady, N. K., et al., "Terahertz metamaterials for linear polarization conversion and anomalous refraction," Science, Vol. 340, No. 6138, 1304-1307, 2013.
doi:10.1126/science.1235399

9. Yang, B., et al., "Design of ultrathin plasmonic quarter-wave plate based on period coupling," Optics Letters, Vol. 38, No. 5, 679-681, 2013.
doi:10.1364/OL.38.000679

10. Fan, R. H., et al., "Freely tunable broadband polarization rotator for terahertz waves," Advanced Materials, Vol. 27, No. 7, 1201-1206, 2015.
doi:10.1002/adma.201404981

11. Scherger, B., C. Jördens, and M. Koch, "Variable-focus terahertz lens," Optics Express, Vol. 19, No. 5, 4528-4535, 2011.
doi:10.1364/OE.19.004528

12. Jiang, X. Y., et al., "An ultrathin terahertz lens with axial long focal depth based on metasurfaces," Optics Express, Vol. 21, No. 24, 30030-30038, 2013.
doi:10.1364/OE.21.030030

13. Cong, L., et al., "A perfect metamaterial polarization rotator," Applied Physics Letters, Vol. 103, No. 17, 171107-171112, 2013.
doi:10.1063/1.4826536

14. Cong, L., et al., "Highly flexible broadband terahertz metamaterial quarter-wave plate," Laser & Photonics Reviews, Vol. 8, No. 4, 626-632, 2014.
doi:10.1002/lpor.201300205

15. Shi, H., et al., "Gradient metasurface with both polarization-controlled directional surface wave coupling and anomalous reflection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 104-107, 2015.
doi:10.1109/LAWP.2014.2356483

16. Gao, L. H., et al., "Broadband diffusion of terahertz waves by multi-bit coding metasurfaces," Light: Science & Applications, Vol. 4, No. 9, 324-332, 2015.
doi:10.1038/lsa.2015.97

17. Headland, D., et al., "Terahertz reflectarrays and nonuniform metasurfaces," IEEE Journal of Selected Topics in Quantum Electronics, Vol. 23, No. 4, 1-18, 2016.
doi:10.1109/JSTQE.2016.2640452

18. Wei, M., et al., "Broadband non-polarizing terahertz beam splitters with variable split ratio," Applied Physics Letters, Vol. 111, No. 7, 071101-071104, 2017.
doi:10.1063/1.4986538

19. Lee, W. S. L., et al., "Broadband terahertz circular-polarization beam splitter," Advanced Optical Materials, Vol. 6, No. 3, 1700852, 2017.
doi:10.1002/adom.201700852

20. Yi, H., et al., "Terahertz wavefront control on both sides of the cascaded metasurfaces," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 1, 209-216, 2018.
doi:10.1109/TAP.2017.2772021

21. Zhang, X. F., et al., "Metasurface for multi-channel terahertz beam splitters and polarization rotators," Applied Physics Letters, Vol. 112, No. 17, 171111-171115, 2018.
doi:10.1063/1.5028401

22. Jia, M., et al., "Efficient manipulations of circularly polarized terahertz waves with transmissive metasurfaces," Light: Science & Applications, Vol. 8, No. 1, 16-24, 2019.
doi:10.1038/s41377-019-0127-0

23. Sun, Y. Y., et al., "General laws of reflection and refraction for metasurface with phase discontinuity," Acta Phys. Sin., Vol. 62, No. 10, 104201-104208, 2013.

24. Yue, F., et al., "High-resolution grayscale image hidden in a laser beam," Light: Science & Applications, Vol. 7, No. 1, 17129-17134, 2018.
doi:10.1038/lsa.2017.129

25. Shi, H., et al., "Gradient metasurface with both polarization-controlled directional surface wave coupling and anomalous reflection," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 104-107, 2015.
doi:10.1109/LAWP.2014.2356483

26. Zang, X. F., et al., "Polarization encoded color image embedded in a dielectric metasurface," Advanced Materials, 1707499, 2018.
doi:10.1002/adma.201707499

27. Ng, K. B., et al., "On the dielectric properties of substrates with different surface conditions for submillimeter-wave and terahertz applications," THz Sci. Technol., Vol. 9, No. 2, 45-59, 2016.

28. Han, L. and Z. H. Wang, "Two methods for general laws of reflection and refraction," College Physics, Vol. 32, No. 3, 49-52, 2013.