Vol. 88
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-16
Wind Turbine Clutter Mitigation for Weather Radar by an Improved Low-Rank Matrix Recovery Method
By
Progress In Electromagnetics Research M, Vol. 88, 191-199, 2020
Abstract
Matrix completion (MC) theory has attracted much attention for its capability of recovering a low-rank matrix through its partial entries. In this paper, we investigate the novel suppression methods of wind turbine clutter (WTC) and introduce the application of MC in WTC suppression for weather radar. First, the vectors of weather signals contaminated by WTC are sequentially constructed into a low-rank snapshot matrix satisfying random undersampling, and then, the weather data can be accurately recovered by minimizing the nuclear norm in the inexact augmented Lagrangian multiplier (IALM) method. The proposed algorithm can effectively suppress not only the wind turbine clutter but also the noise, greatly improving the signal-to-noise ratio of the echo. An experimental test validates the effectiveness of the proposed MC algorithm, and its performance is superior to the widely-used multiquadric interpolation algorithm with potential engineering applications.
Citation
Mingwei Shen Xiaodong Wang Di Wu Dai-Yin Zhu , "Wind Turbine Clutter Mitigation for Weather Radar by an Improved Low-Rank Matrix Recovery Method," Progress In Electromagnetics Research M, Vol. 88, 191-199, 2020.
doi:10.2528/PIERM19103101
http://www.jpier.org/PIERM/pier.php?paper=19103101
References

1. Uysal, F., I. Selesnick, and B. M. Isom, "Mitigation of wind turbine clutter for weather radar by signal separation," IEEE Transactions on Geoscience and Remote Sensing, Vol. 54, No. 5, 1-10, 2016.
doi:10.1109/TGRS.2015.2508380

2. He, W., X. Wang, and Y. Shi, "Wind turbine clutter mitigation based on matching pursuits," IET International Radar Conference 2015, 1-6, Hangzhou, China, Oct. 2015.

3. Pakrooh, P., A. Homan, and L. L. Scharf, "Multipulse adaptive coherence for detection in wind turbine clutter," IEEE Transactions on Aerospace and Electronic Systems, Vol. 53, No. 6, 3091-3103, 2017.
doi:10.1109/TAES.2017.2727825

4. Lok, Y. F., A. Palevsky, and J. Wang, "Simulation of radar signal on wind turbine," IEEE National Radar Conference, 538-543, Arlington, USA, Jun. 2010.

5. Danoon, L. R. and A. K. Brown, "Modeling methodology for computing the radar cross section and doppler signature of wind farms," IEEE Transactions on Antennas & Propagation, Vol. 61, No. 10, 5166-5174, 2013.
doi:10.1109/TAP.2013.2272454

6. Evans, J. E., "Ground clutter cancellation for the NEXRAD system,", Lincoln Laboratory: Project Report ATC-122, Oct. 1983.

7. Hubbert, J. C., M. Dixon, and S. M. Ellis, "Weather radar ground clutter. Part I: Identification, modeling, and simulation," Journal of Atmospheric & Oceanic Technology, Vol. 26, No. 7, 1165-1180, 2009.
doi:10.1175/2009JTECHA1159.1

8. Hubbert, J. C., M. Dixon, and S. M. Ellis, "Weather radar ground clutter. Part II: Real-time identification and filtering," Journal of Atmospheric & Oceanic Technology, Vol. 26, No. 7, 1181-1197, 2009.
doi:10.1175/2009JTECHA1160.1

9. Uysal, F., "Signal processing techniques forwind turbine clutter mitigation,", New York University, New York, 2016.

10. Candes, E. J. and T. Tao, "The power of convex relaxation: Near-optimal matrix completion," IEEE Transactions on Information Theory, Vol. 56, No. 5, 2053-2080, 2010.
doi:10.1109/TIT.2010.2044061

11. Deng, B., R. Tao, and D. F. Ping, "Moving-target-detection algorithm with compensation for Doppler migration based on FRFT," Binggong Xuebao/Acta Armamentarii, Vol. 20, No. 10, 1303-1309, 2011.

12. Candes, E. J. and Y. Plan, "Matrix completion with noise," Proceedings of the IEEE, Vol. 98, No. 6, 925-936, 2010.
doi:10.1109/JPROC.2009.2035722

13. He, W. K. and Q. P. Zai, "Wind turbine radar clutter detection method based on Micro-Doppler characteristics of wind turbine," Journal of Signal Processing, Vol. 33, No. 4, 1-9, 2017.

14. Yang, D., G. S. Liao, and S. Q. Zhu, "Improved low-rank recovery method for sparsely sampling data in array signal processing," Journal of Xidian University, Vol. 41, No. 5, 30-35, 2014.

15. Suleiman, W. and M. Pesavento, "Performance analysis of the decentralized eigendecomposition and ESPRIT algorithm," IEEE Transactions on Signal Processing, Vol. 64, No. 9, 2375-2386, 2015.
doi:10.1109/TSP.2016.2523448

16. Mohammad-Hossein, G. H., G. Zhang, and Y. Li, "Detection of ground clutter from weather radar using a dual-polarization and dual-scan method," Atmosphere, Vol. 7, No. 6, 83-93, 2016.
doi:10.3390/atmos7060083

17. Ai, W., et al., "Ground clutter removing for wind profiler radar signal using adaptive wavelet threshold," International Conference on Measuring Technology & Mechatronics Automation IEEE Computer Society, 370-373, Washington, USA, Mar. 2010.

18. Yang, J. F., X. M. Yuan, and , "Linearized augmented Lagrangian and alternating direction methods for nuclear norm minimization," Mathematics of Computation, Vol. 82, No. 281, 301-329, 2011.
doi:10.1090/S0025-5718-2012-02598-1

19. Li, M., Z. He, and W. Li, "Transient interference mitigation via supervised matrix completion," IEEE Geoscience & Remote Sensing Papers, Vol. 13, No. 7, 907-911, 2016.
doi:10.1109/LGRS.2016.2553082

20. Turso, S. and T. Bertuch, "Electronically steered cognitive weather radar — A technology perspective," The 2017 IEEE Radar Conference, Seattle, Washington, USA, May 2017, DOI: 10.1109/RADAR.2017.7944266.

21. Koredianto, U. and R. Mohammad, "Comparison of classical interpolation methods and compressive sensing for missing data reconstruction," 2019 IEEE International Conference on Signals and Systems (ICSigSys), Bandung, Indonesia, Jul. 2019.

22. Li, B. and A. P. Petropulu, "Optimum co-design for spectrum sharing between matrix completion based MIMO radars and a MIMO communication system," IEEE Transactions on Signal Processing, Vol. 64, No. 17, 4562-4575, 2016.
doi:10.1109/TSP.2016.2569479