Vol. 88

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-01-08

Ground Plane Effect Suppression Method to Design a Low-Profile Printed UWB Antenna

By Aliakbar Dastranj and Faezeh Bahmanzadeh
Progress In Electromagnetics Research M, Vol. 88, 91-100, 2020
doi:10.2528/PIERM19110105

Abstract

This paper presents a technique to design a very small planar antenna for ultra-wideband (UWB) communication applications. To cover UWB frequency range by a small-size antenna, the ground plane influence on the antenna impedance bandwidth is suppressed at middle and higher frequencies. To accomplish this purpose, a rectangular and several stepped slots are etched on the conventional radiator. Also, a tuning stub is printed in the rectangular slot, and its length is optimized. This technique decreases current distribution on the ground plane at higher frequencies, and the impedance matching of the antenna is significantly influenced by the radiating patch. The antenna has a compact size of 25 × 25 × 1.6 mm3. It can provide a wide impedance bandwidth from 2.8 to 15.4 GHz (|S11| < -10 dB) which covers the entire UWB spectrum (3.1-10.6 GHz). Two prototypes of the antenna were fabricated and measured. The impedance matching, group delay, fidelity factor, and the antenna radiation characteristics, including co- and cross-polarized far-field patterns and realized gain were analyzed with numerical simulation and experimental measurement. Measured data are in good agreement with the simulated ones. Based on the obtained frequency- and time-domain characteristics, the designed antenna is an excellent candidate for UWB wireless devices.

Citation


Aliakbar Dastranj and Faezeh Bahmanzadeh, "Ground Plane Effect Suppression Method to Design a Low-Profile Printed UWB Antenna," Progress In Electromagnetics Research M, Vol. 88, 91-100, 2020.
doi:10.2528/PIERM19110105
http://www.jpier.org/PIERM/pier.php?paper=19110105

References


    1. Pfeiffer, C., T. Steffen, and G. Kakas, "Uniform beamwidth UWB feed antenna using lossy transmission lines," Progress In Electromagnetics Research, Vol. 165, 119-130, 2019.
    doi:10.2528/PIER19081202

    2. Raad, H. K., "An UWB antenna array for flexible IoT wireless systems," Progress In Electromagnetics Research, Vol. 162, 109-121, 2018.
    doi:10.2528/PIER18060804

    3. Ahmed, O. and A. R. Sebak, "A printed monopole antenna with two steps and a circular slot for UWB applications," IEEE Antennas Wirel. Propag. Lett., Vol. 7, 411-413, 2008.
    doi:10.1109/LAWP.2008.2001026

    4. Oraizi, H. and S. Hedayati, "Miniaturized UWB monopole microstrip antenna design by the combination of Giusepe Peano and Sierpinski carpet fractals," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 67-70, 2011.
    doi:10.1109/LAWP.2011.2109030

    5. Rezaeieh, S. A., A. M. Abbosh, and M. A. Antoniades, "Compact CPW-fed planar monopole antenna with wide circular polarization bandwidth," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 1295-1298, 2013.
    doi:10.1109/LAWP.2013.2284003

    6. Abbosh, A. M. and M. E. Bialkowsky, "Design of ultrawideband planar monopole antennas of circular and elliptical shape," IEEE Trans. Antennas Propag., Vol. 56, No. 1, 17-23, 2008.
    doi:10.1109/TAP.2007.912946

    7. Koohestani, M. and M. Golpour, "U-shaped microstrip patch antenna with novel parasitic tuning stubs for ultra wideband applications," IET Microw. Antennas Propag., Vol. 4, No. 7, 938-946, 2010.
    doi:10.1049/iet-map.2009.0049

    8. Eldek, A. A., A. Z. Elsherbeni, and C. E. Smith, "Wide-band modified printed bow-tie antenna with single and dual polarization for C- and X-band applications," IEEE Trans. Antennas Propag., Vol. 53, No. 9, 3067-3072, 2005.
    doi:10.1109/TAP.2005.851870

    9. Chen, G.-Y. and J.-S. Sun, "A printed dipole antenna with microstrip tapered balun," Microw. Opt. Technol. Lett., Vol. 40, No. 4, 344-346, 2004.
    doi:10.1002/mop.11374

    10. Zheng, G., A. A. Kishk, A. B. Yakovlev, and A. W. Glisson, "Simplified feed for a modified printed Yagi antenna," Electron. Lett., Vol. 40, No. 8, 464-466, 2004.
    doi:10.1049/el:20040348

    11. Kaneda, N., W. Deal, Y. Qian, R. Waterhouse, and T. Itoh, "A broad-band planar quasi-Yagi antenna," IEEE Trans. Antennas Propag., Vol. 50, No. 8, 1158-1160, 2002.
    doi:10.1109/TAP.2002.801299

    12. Deal, W., N. Kaneda, J. Sor, Y. Qian, and T. Itoh, "A new quasi-Yagi antenna for planar active antenna arrays," IEEE Trans. Microwave Theory Tech., Vol. 48, No. 6, 910-918, 2000.
    doi:10.1109/22.846717

    13. Lee, H. L., H. J. Lee, J. G. Yook, and H. K. Park, "Broadband planar antenna having round corner rectangular wide slot," Proc. IEEE Antennas and Propagation Society Int. Symp., Vol. 2, 460-463, Jun. 16–21, 2002.

    14. Chen, H.-D., "Broadband CPW-fed square slot antennas with a widened tuning stub," IEEE Trans. Antennas Propag., Vol. 51, No. 4, 1982-1986, Aug. 2003.
    doi:10.1109/TAP.2003.814747

    15. Chair, R., A. A. Kishk, and K. F. Lee, "Ultrawideband coplanar waveguide-fed rectangular slot antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 3, 227-229, 2004.
    doi:10.1109/LAWP.2004.836580

    16. Liu, Y. F., K. L. Lau, Q. Xue, and C. H. Chan, "Experimental studies of printed wide-slot antenna for wide-band applications," IEEE Antennas Wirel. Propag. Lett., Vol. 3, 273-275, 2004.
    doi:10.1109/LAWP.2004.837510

    17. Eskandari, H., M. R. Booket, M. Kamyab, and M. Veysi, "Investigation on a class of wideband printed slot antenna," IEEE Antennas Wirel. Propag. Lett., Vol. 9, 1221-1224, 2010.
    doi:10.1109/LAWP.2010.2100360

    18. Liu, W. X., Y. Z. Yin, W. L. Xu, and S. L. Zuo, "Compact open-slot antenna with bandwidth enhancement," IEEE Antennas Wirel. Propag. Lett., Vol. 10, 850-1224, 2011.

    19. Sung, Y., "Bandwidth enhancement of a microstrip line-fed printed wide-slot antenna with a parasitic center patch," IEEE Trans. Antennas Propag., Vol. 60, No. 4, 1712-1716, Apr. 2012.
    doi:10.1109/TAP.2012.2186224

    20. Xu, K., Z. Zhu, H. Li, J. Huangfu, C. Li, and L. Ran, "A printed single-layer UWB monopole antenna with extended ground plane stubs," IEEE Antennas Wirel. Propag. Lett., Vol. 12, 237-240, 2013.
    doi:10.1109/LAWP.2013.2247555

    21. Siddiqui, J. Y., C. Saha, and Y. M. M. Antar, "A novel ultrawideband (UWB) printed antenna with a dual complementary characteristic," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 974-977, 2015.
    doi:10.1109/LAWP.2014.2388272

    22. Unnikrishnan, D., D. Kaddour, S. Tedjini, E. Bihar, and M. Saadaoui, "CPW-fed inkjet printed UWB antenna on ABS-PC for integration in molded interconnect devices technology," IEEE Antennas Wirel. Propag. Lett., Vol. 14, 1124-1128, 2015.

    23. Wu, Q., R. Jin, J. Geng, and M. Ding, "Pulse preserving capabilities of printed circular disk monopole antennas with different grounds for the specified input signal forms," IEEE Trans. Antennas Propag., Vol. 55, No. 10, 2866-2873, Oct. 2007.
    doi:10.1109/TAP.2007.905854

    24. Quintero, G., J. F. Zurcher, and A. K. Skrivervik, "System fidelity factor: A new method for comparing UWB antennas," IEEE Trans. Antennas Propag., Vol. 59, No. 7, 2502-2512, 2011.
    doi:10.1109/TAP.2011.2152322