Vol. 90
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-02-10
A Novel Approach Using an Inductive Loading to Lower the Resonant Frequency of a Mushroom-Shaped High Impedance Surface
By
Progress In Electromagnetics Research M, Vol. 90, 19-26, 2020
Abstract
This paper reports a novel approach using an inductive loading to reduce the resonant frequency of a mushroom-shaped high impedance surface. The current path is extended on the mushroom-shaped structure's vias and additional traces, which introduces a three-dimensional inductor to the unit cell and leads to an increase in total inductance. As a result, the resonant frequency of the high impedance structure decreases, and a smaller unit cell size can be achieved at the low gigahertz frequency range. Finite element electromagnetic simulation, equivalent circuits modeling, and experimental measurements suggest the feasibility of the proposed approach.
Citation
Minyu Gu Daniel Vorobiev Woo Seok Kim Hung-Ta Chien Hyun-Myung Woo Sung Cheol Hong Sung Il Park , "A Novel Approach Using an Inductive Loading to Lower the Resonant Frequency of a Mushroom-Shaped High Impedance Surface," Progress In Electromagnetics Research M, Vol. 90, 19-26, 2020.
doi:10.2528/PIERM19110607
http://www.jpier.org/PIERM/pier.php?paper=19110607
References

1. Sievenpiper, D., L. Zhang, R. F. Broas, N. G. Alexopolous, and E. Yablonovitch, "High-impedance electromagnetic surfaces with a forbidden frequency band," IEEE Transactions on Microwave Theory and Techniques, Vol. 47, No. 11, 2059-2074, 1999.
doi:10.1109/22.798001

2. Clavijo, S., R. E. Diaz, and W. E. McKinzie, "Design methodology for Sievenpiper high-impedance surfaces: An artificial magnetic conductor for positive gain electrically small antennas," IEEE Transactions on Antennas and Propagation, Vol. 51, No. 10, 2678-2690, 2003.
doi:10.1109/TAP.2003.817575

3. Kim, I. K., H. Wang, S. J. Weiss, and V. V. Varadan, "Embedded wideband metaresonator antenna on a high-impedance ground plane for vehicular applications," IEEE Transactions on Vehicular Technology, Vol. 61, No. 4, 1665-1672, 2012.
doi:10.1109/TVT.2012.2189254

4. Mohamed-Hicho, N. M., E. Antonino-Daviu, M. Cabedo-Fabrés, and M. Ferrando-Bataller, "A novel low-profile high-gain UHF antenna using high-impedance surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1014-1017, 2015.
doi:10.1109/LAWP.2015.2389274

5. Costa, F., S. Genovesi, and A. Monorchio, "A frequency selective absorbing ground plane for low-RCS microstrip antenna arrays," Progress In Electromagnetics Research, Vol. 126, 317-332, 2012.
doi:10.2528/PIER12012904

6. Vallecchi, A., J. R. De Luis, F. Capolino, and F. De Flaviis, "Low profile fully planar folded dipole antenna on a high impedance surface," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 1, 51-62, 2011.
doi:10.1109/TAP.2011.2167912

7. Kim, S., A. Li, and D. F. Sievenpiper, "Reconfigurable impedance ground plane for broadband antenna systems," 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, 1503-1504, IEEE, July 2017.

8. Park, S. I., "Enhancement of wireless power transmission into biological tissues using a high surface impedance ground plane," Progress In Electromagnetics Research, Vol. 135, 123-136, 2013.
doi:10.2528/PIER12110902

9. Bansal, A., B. C. Paul, and K. Roy, "An analytical fringe capacitance model for interconnects using conformal mapping," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol. 25, No. 12, 2765-2774, 2006.
doi:10.1109/TCAD.2006.882489

10. Grover, F. W., Inductance Calculations: Working Formulas and Tables, Courier Corporation, 2004.

11. Remski, R., "Analysis of photonic bandgap surfaces using Ansoft HFSS," Microwave Journal, Euroglobal Edition, Vol. 43, No. 9, 190-199, 2000.

12. Ashcroft, N. W. and N. D. Mermin, "Solid state physics,", Saunders College, Philadelphia, 1976.

13. Costa, F., S. Genovesi, and A. Monorchio, "On the bandwidth of high-impedance frequency selective surfaces," IEEE Antennas and Wireless Propagation Letters, Vol. 8, 1341-1344, 2009.
doi:10.1109/LAWP.2009.2038346