Vol. 92
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-06
Numerical Simulation of Wideband Calorimeter for High Power Microwave
By
Progress In Electromagnetics Research M, Vol. 92, 79-88, 2020
Abstract
The novel design of an ultra-wideband calorimeter for energy measurement of high power microwave pulses of nanosecond duration is proposed in this paper. The main idea is the use of a circular waveguide with losses in the wall and metal cone insertion at the axis to increase attenuation constant in the waveguide. The efficiency of the concept was proved with the numeric simulation and optimization of the calorimeter design with ANSYS HFSS software for frequencies from 8 to 38 GHz. The operating modes are supposed to be symmetric TM0n ones. Ethanol was chosen as an absorbing medium. It is parted from the vacuum volume by a plastic tube. The frequency dependencies of ethanol's relative permittivity and loss tangent were taken into account in the simulation model. The reflection coefficient for TM01 mode is below -20 dB at the lowest frequency of 8 GHz and well below the level of -25 dB from 10 to 38 GHz. The reflection coefficients for higher order modes remain below -30 dB until the operating frequency is close to the cut-off frequency for a particular mode. The maximum accepted power level is of hundreds of megawatts for pulses of a nanoseconds duration. The effect of waveguide modes mixture at the input of the calorimeter on the maximum accepted power level was considered. This level may differ by 4 times between specific modes mixtures. Therefore, the transition from a particular microwave source to the calorimeter input should be carefully optimized.
Citation
Ivan K. Kurkan Alexey I. Klimov Pavel V. Priputnev Vladislav V. Rostov , "Numerical Simulation of Wideband Calorimeter for High Power Microwave," Progress In Electromagnetics Research M, Vol. 92, 79-88, 2020.
doi:10.2528/PIERM19111103
http://www.jpier.org/PIERM/pier.php?paper=19111103
References

1. Benford, J., J. A. Swegle, and E. Shamiloglu, High Power Microwaves, Taylor & Francis, Oxford, 2007.
doi:10.1201/9781420012064

2. Huttlin, G. A., et al., "The reflex-diode HPM source on Aurora," IEEE Trans. Plasma Sci., Vol. 18, No. 3, 618-625, 1990.
doi:10.1109/27.55935

3. Bugaev, S. P., et al., "Relativistic multiwave cerenkov generators," IEEE Trans. Plasma Sci., Vol. 18, No. 3, 525-536, 1990.
doi:10.1109/27.55924

4. Efthimion, P., P. R. Smith, and S. P. Schlesinger, "Broad spectral electromagnetic radiation calorimeter: Centimeters to microns," Rev. Sci. Instrum., Vol. 47, No. 9, 1059-1062, 1976.
doi:10.1063/1.1134817

5. Warton, C. B., L. M. Earley, and W. P. Ballard, "Calorimetric measurements of single-pulse high-power microwaves in oversized waveguides," Rev. Sci. Instrum., Vol. 57, No. 5, 855-858, 1986.
doi:10.1063/1.1138824

6. Earley, L. M., W. P. Ballard, and L. D. Roose, "Rectangular waveguide calorimeter for single intense microwave pulses," Rev. Sci. Instrum., Vol. 57, No. 9, 2359-2361, 1986.
doi:10.1063/1.1138678

7. Earley, L. M., et al., "Comprehensive approach for diagnosing intense single-pulse microwave sources," Rev. Sci. Instrum., Vol. 57, No. 9, 2283-2293, 1986.
doi:10.1063/1.1138699

8. Zaitsev, N. I., et al., "A calorimeter for measuring the energy of a high-power electromagnetic pulse," Instrum. Exp. Tech., Vol. 35, No. 2, 283-284, 1992.

9. Belousov, V. I., et al., "Calorimeter for measuring the total energy of high-power pulse millimeter-range devices," Instrum. Exp. Tech., Vol. 39, No. 3, 402-405, 1996.

10. Belousov, V. I., et al., "A dry overmoded-waveguide calorimeter for measurement of high-power microwave pulse energy," Instrum. Exp. Tech., Vol. 35, No. 3, 482-487, 1992.

11. Bykov, N. M., et al., "Diagnosis of high-power nanosecond pulses of microwave-radiation," Instrum. Exp. Tech., Vol. 30, No. 6(2), 1393-1397, 1987.

12. Klimov, A. I., et al., "A calorimeter for high power microwave pulse measurement," Proceedings of 15th International Symposium on High Current Electronics, 422-424, Tomsk, Russia, 2008.

13. Lisichkin, A. L. and E. V. Nesterov, "Waveguide calorimeter for pulsed microwave radiation in the centimeter wavelength range," Instrum. Exp. Tech., Vol. 41, No. 3, 362-364, 1998.

14. Kiselev, V. A., et al., "A calorimeter with a capacitive probe for measuring microwave energy," Instrum. Exp. Tech., Vol. 48, No. 2, 230-233, 2005.
doi:10.1007/s10786-005-0041-y

15. Lisichkin, A. L., E. V. Nesterov, and V. A. Stroganov, "Calorimeter for pulsed microwave radiation," Instrum. Exp. Tech., Vol. 39, No. 1, 70-72, 1996.

16. Shkvarunets, A. G., "A broadband microwave calorimeter of large cross section," Instrum. Exp. Tech., Vol. 39, No. 4, 535-538, 1996.

17. Lisichkin, A. L., et al., "A liquid pulsed microwave radiation calorimeter," Instrum. Exp. Tech., Vol. 50, No. 1, 82-85, 2007.
doi:10.1134/S0020441207010101

18. Klimov, A. I., et al., "Measurement of parameters of X-band high-power microwave super radiative pulses," IEEE Trans. Plasma Sci., Vol. 36, No. 3, 661-664, 2008.
doi:10.1109/TPS.2008.917300

19. Vykhodtsev, P. V., et al., "Liquid calorimeters for measuring the energy of high-power microwave pulses," Instrum. Exp. Tech., Vol. 58, No. 4, 510-514, 2015.
doi:10.1134/S0020441215030264

20. Teng, Y., et al., "High-efficiency coaxial relativistic backward wave oscillator," Rev. Sci. Instrum., Vol. 82, No. 2, 024701, 2011.
doi:10.1063/1.3536837

21. Ye, H., et al., "Research on calorimeter for high-power microwave measurements," Rev. Sci. Instrum., Vol. 86, No. 12, 124706, 2015.
doi:10.1063/1.4938160

22. Klimov, A. I. and V. Yu. Kozhevnikov, "Numerical optimization of aperture absorbing loads of liquid calorimeters for high-power microwave pulses," Rus. Phys. Journ., Vol. 60, No. 8, 1319-1324, 2017.
doi:10.1007/s11182-017-1215-3

23. Dagys, M., et al., "The resistive sensor: A device for high-power microwave pulsed measurements," IEEE Antennas and Propagation Magazine, Vol. 43, No. 5, 64-79, 2001.
doi:10.1109/74.979368

24. Ballard, W. P. and L. M. Earley, "Microwave detecting diode rise-time measurements," Rev. Sci. Instrum., Vol. 56, No. 7, 1470-1472, 1985.
doi:10.1063/1.1138136

25. Lobaev, M. A., et al., "Effect of inhomogeneous microwave field on the threshold of multipactor discharge on a dielectric," Tech. Phys. Lett., Vol. 35, No. 12, 1074-1077, 2009.
doi:10.1134/S1063785009120025

26. Chang, C., et al., "The effect of grooved surface on dielectric multipactor," J. Appl. Phys., Vol. 105, No. 12, 123305, 2009.
doi:10.1063/1.3153947

27. Klimov, A. I. and E. M. Totmeninov, "Diffraction effects in measurements of characteristics of high-power microwave pulses with wide aperture liquid calorimeters," Rus. Phys. Journ., Vol. 60, No. 6, 964-971, 2017.
doi:10.1007/s11182-017-1165-9

28. Tarakanov, V. P., et al., "Time-dependent numerical simulation of diffraction and absorption effects in diagnostics of short high-power microwave pulses using wide-aperture liquid calorimeters," EPJ Web Conf., Vol. 149, 04046, 2017.
doi:10.1051/epjconf/201714904046

29. ANSYS HFSS 3D Electromagnetic Field Simulator for RF and Wireless Design [online] available at https://www.ansys.com/products/electronics/ansys-hfss,.

30. Schamiloglu, E., et al., "High-power microwave-induced TM/sub01/plasma ring," IEEE Transactions on Plasma Science, Vol. 24, No. 1, 6-7, 1996.
doi:10.1109/27.491664

31. Ivanov, O. A., M. A. Lobaev, V. A. Isaev, and A. L. Vikharev, "Experimental study of a multipactor discharge on a dielectrics surface in a high-Q microwave cavity," Plasma Phys. Reports, Vol. 36, No. 4, 336-344, 2010.
doi:10.1134/S1063780X10040033

32. Lobaev, M. A., et al., "Effect of inhomogeneous microwave field on the threshold of multipactor discharge on a dielectric," Tech. Phys. Lett., Vol. 35, No. 12, 1074-1077, 2009.
doi:10.1134/S1063785009120025

33. Krupka, J., "Measurements of the complex permittivity of low loss polymers at frequency range from 5 GHz to 50 GHz," IEEE Microw. Wireless Compon. Lett., Vol. 26, No. 6, 464-466, 2016.
doi:10.1109/LMWC.2016.2562640

34. Bao, J., M. L. Swicord, and C. C. Davis, "Microwave dielectric characterization of binary mixtures of water, methanol, and ethanol," J. Chem. Phys., Vol. 104, No. 12, 4441-4450, 1996.
doi:10.1063/1.471197

35. Barthel, J. K. Bachhuber, R. Buchner, and H. Hetzenauer, "Dielectric spectra of some common solvents in the microwave region. Water and lower alcohols," Chem. Phys. Lett., Vol. 165, No. 4, 369-373, 1990.
doi:10.1016/0009-2614(90)87204-5

36. Sato, T. and R. Buchner, "Dielectric relaxation processes in ethanol/water mixtures," J. Phys. Chem. A, Vol. 108, No. 23, 5007-5015, 2004.
doi:10.1021/jp035255o

37., "Agilent basics of measuring the dielectric properties of materials. Application note," Agilent Technologies, 2013.

38. Cole, K. S. and R. H. Cole, "Dispersion and absorption in dielectrics. I. Alternating current characteristics," J. Chem. Phys., Vol. 9, 341-352, 1941.
doi:10.1063/1.1750906