Vol. 89
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-02-03
Wide Bandwidth High Gain Circularly Polarized Millimetre-Wave Rectangular Dielectric Resonator Antenna
By
Progress In Electromagnetics Research M, Vol. 89, 171-177, 2020
Abstract
A wideband high gain circularly polarized (CP) rectangular dielectric resonator antenna (RDRA) having a frequency range of 21 to 31 GHz is proposed. The RDRA consists of two layers with different dielectric permittivities and has been excited using a cross slot aperture. The proposed antenna offers wide impedance and CP bandwidths of ~36.5% and 13.75% respectively, in conjunction with a high gain of ~12.5 dBi. Close agreement has been achieved between simulated and measured results.
Citation
Abdulmajid A. Abdulmajid, Salam Khamas, and Shiyu Zhang, "Wide Bandwidth High Gain Circularly Polarized Millimetre-Wave Rectangular Dielectric Resonator Antenna," Progress In Electromagnetics Research M, Vol. 89, 171-177, 2020.
doi:10.2528/PIERM19111903
References

1. Niu, Y., Y. Li, D. Jin, L. Su, and A. V. Vasilakos, "A survey of millimeter wave communications (mmWave) for 5G: Opportunities and challenges," Wireless Networks, Vol. 21, 2657-2676, 2015.
doi:10.1007/s11276-015-0942-z

2. Wang, C.-X., F. Haider, X. Gao, X.-H. You, Y. Yang, D. Yuan, et al. "Cellular architecture and key technologies for 5G wireless communication networks," IEEE Communications Magazine, Vol. 52, 122-130, 2014.
doi:10.1109/MCOM.2014.6736752

3. Pan, Y.-M., K. W. Leung, and K.-M. Luk, "Design of the millimeter-wave rectangular dielectric resonator antenna using a higher-order mode," IEEE Transactions on Antennas and Propagation, Vol. 59, 2780-2788, 2011.
doi:10.1109/TAP.2011.2158962

4. Shahadan, N. H., M. H. Jamaluddin, M. R. Kamarudin, Y. Yamada, M. Khalily, M. Jusoh, et al. "Steerable higher order mode dielectric resonator antenna with parasitic elements for 5G applications," IEEE Access, Vol. 5, 22234-22243, 2017.
doi:10.1109/ACCESS.2017.2760924

5. Luk, K. M. and K. W. Leung, Dielectric Resonator Antennas, Research Studies Press Limited, Hertforodshire, England, UK, 2002.

6. Gangwar, R. K., S. Singh, and D. Kumar, "Comparative studies of rectangular dielectric resonator antenna with probe and microstrip line feeds," Archives of Applied Science Research, Vol. 2, 1-10, 2010.

7. Petosa, A. and S. Thirakoune, "Rectangular dielectric resonator antennas with enhanced gain," IEEE Transactions on Antennas and Propagation, Vol. 59, 1385-1389, 2011.
doi:10.1109/TAP.2011.2109690

8. Oh, J., T. Baek, D. Shin, J. Rhee, and S. Nam, "60-GHz CPW-fed dielectric-resonator-above-patch (DRAP) antenna for broadbandWLAN applications using micromachining technology," Microwave and Optical Technology Letters, Vol. 49, 1859-1861, 2007.
doi:10.1002/mop.22632

9. Elboushi, A., O. Haraz, A. Sebak, and T. Denidni, "A new circularly polarized high gain DRA millimeter-wave antenna," 2010 IEEE in Antennas and Propagation Society International Symposium (APSURSI), 1-4, 2010.

10. Perron, A., T. A. Denidni, and A. R. Sebak, "Circularly polarized microstrip/elliptical dielectric ring resonator antenna for millimeter-wave applications," IEEE Antennas and Wireless Propagation Letters, Vol. 9, 783-786, 2010.
doi:10.1109/LAWP.2010.2064750

11. Feng, L. Y. and K. W. Leung, "Millimeter-wave wideband dielectric resonator antenna," 2015 40th International Conference on Infrared, Millimeter, and Terahertz waves (IRMMW-THz), 1-2, 2015.

12. Laribi, M. and N. Hakem, "Hight-gain circular polarised hybrid DRA for millimeter-wave," IEEE International Symposium on Antennas and Propagation (APSURSI), 141-142, 2016.
doi:10.1109/APS.2016.7695779

13. Nor, N. M., M. H. Jamaluddin, M. R. Kamarudin, and M. Khalily, "Rectangular dielectric resonator antenna array for 28 GHz applications," Progress In Electromagnetics Research C, Vol. 63, 53-61, 2016.
doi:10.2528/PIERC16022902

14. Kaouach, H., L. Dussopt, J. Lanteri, T. Koleck, and R. Sauleau, "Wideband low-loss linear and circular polarization transmit-arrays in V-band," IEEE Transactions on Antennas and Propagation, Vol. 59, 2513-2523, 2011.
doi:10.1109/TAP.2011.2152331

15. Lin, J.-H., W.-H. Shen, Z.-D. Shi, and S.-S. Zhong, "Circularly polarized dielectric resonator antenna arrays with fractal cross-slot-coupled DRA elements," International Journal of Antennas and Propagation, Vol. 2017, 2017.

16. Mazhar, W., D. Klymyshyn, G. Wells, A. Qureshi, M. Jacobs, and S. Achenbach, "Low profile artificial grid dielectric resonator antenna arrays for mm-wave applications," IEEE Transactions on Antennas and Propagation, Vol. 67, 4406-4417, 2019.
doi:10.1109/TAP.2019.2907610

17. Abdulmajid, A. A., Y. Khalil, and S. Khamas, "Higher-order-mode circularly polarized twolayer rectangular dielectric resonator antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 1114-1117, 2018.
doi:10.1109/LAWP.2018.2834981

18. Abdulmajid, A. A. and S. Khamas, "Higher order mode layered cylindrical dielectric resonator antenna," Progress In Electromagnetics Research C, Vol. 90, 65-77, 2019.
doi:10.2528/PIERC18112808

19. Studio, M., "Computer simulation technology (CST),", Online: www.cst.com, 2015.

20. Maity, S. and B. Gupta, "Closed form expressions to find radiation patterns of rectangular dielectric resonator antennas for various modes," IEEE Transactions on Antennas and Propagation, Vol. 62, 6524-6527, 2014.
doi:10.1109/TAP.2014.2361146

21. Almpanis, G., C. Fumeaux, and R. Vahldieck, "Offset cross-slot-coupled dielectric resonator antenna for circular polarization," IEEE Microwave and Wireless Components Letters, Vol. 16, 461-463, 2006.
doi:10.1109/LMWC.2006.879484

22. Maknikar, R. D. and V. G. Kasabegoudar, "Circularly polarized cross-slot-coupled stacked dielectric resonator antenna for wireless applications," International Journal of Wireless Communications and Mobile Computing, Vol. 1, 68-73, 2013.
doi:10.11648/j.wcmc.20130102.12