Vol. 89

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-01-30

Non-Reciprocal Antenna Array Based on Magnetized Graphene for THz Applications Using the Iterative Method

By Aymen Hlali, Zied Houaneb, and Hassen Zairi
Progress In Electromagnetics Research M, Vol. 89, 93-100, 2020
doi:10.2528/PIERM19112203

Abstract

An effective and precise approach to the Wave Concept Iterative Process method modeling of magnetized graphene sheet as an anisotropic conductive surface is used to analyze the anisotropy of magnetostatically biased graphene and for studying an electrically doped magnetically biased graphene non-reciprocal antenna array for THz applications. The tuning of the performance of the array antenna is possible by varying the magnetic field and the chemical potential of graphene material. The return loss value decreases by increasing the magnetostatic bias and increases when the chemical potential increases.

Citation


Aymen Hlali, Zied Houaneb, and Hassen Zairi, "Non-Reciprocal Antenna Array Based on Magnetized Graphene for THz Applications Using the Iterative Method," Progress In Electromagnetics Research M, Vol. 89, 93-100, 2020.
doi:10.2528/PIERM19112203
http://www.jpier.org/PIERM/pier.php?paper=19112203

References


    1. Crassee, I., J. Levallois, A. L.Walter, M. Ostler, A. Bostwick, E. Rotenberg, T. Seyller, D. D. Marel, and A. B. Kuzmenko, "Giant Faraday rotation in single-and multilayer graphene," Nature Physics, Vol. 7, 48-51, 2011.
    doi:10.1038/nphys1816

    2. Sounas, D. L. and C. Caloz, "Electromagnetic nonreciprocity and gyrotropy of graphene," Applied Physics Letters, Vol. 98, 021911, 2011.
    doi:10.1063/1.3543633

    3. Sounas, D. L. and C. Caloz, "Edge surface modes in magnetically biased chemically doped graphene strips," Applied Physics Letters, Vol. 99, 231902, 2011.
    doi:10.1063/1.3665944

    4. Sounas, D. L. and C. Caloz, "Gyrotropy and nonreciprocity of graphene for microwave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 60, 901-914, 2012.
    doi:10.1109/TMTT.2011.2182205

    5. Serrano, D. C., J. S. G. Diaz, D. L. Sounas, Y. Hadad, A. A. Melcon, and A. Alu, "Nonreciprocal graphene devices and antennas based on spatiotemporal modulation," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1529-1532, 2016.
    doi:10.1109/LAWP.2015.2510818

    6. Zhu, B., G. Ren, Y. Gao, B. Wu, Q. Wang, C. Wan, and S. Jian, "Graphene plasmons isolator based on non-reciprocal coupling," Optics Express, Vol. 23, 16071-16083, 2015.
    doi:10.1364/OE.23.016071

    7. Tamagnone, M., C. Moldovan, J. M. Poumirol, A. B. Kuzmenko, A. M. Ionescu, J. R. Mosig, and J. P. Carrier, "Near optimal graphene terahertz non-reciprocal isolator," Nature Communications, Vol. 7, 11216(1-6), 2016.
    doi:10.1038/ncomms11216

    8. Serrano, D. C., J. S. G. Diaz, A. Alu, and A. A. Melcon, "Electrically and magnetically biased graphene-based cylindrical waveguides: analysis and applications as reconfigurable antennas," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 951-960, 2015.
    doi:10.1109/TTHZ.2015.2472985

    9. Chamanara, N., D. Sounas, and C. Caloz, "Non-reciprocal magnetoplasmon graphene coupler," Optics Express, Vol. 21, 11248-11256, 2013.
    doi:10.1364/OE.21.011248

    10. Tamagnone, M., A. Fallahi, J. R. Mosig, and J. P. Carrier, "Fundamental limits and near-optimal design of graphene modulators and non-reciprocal devices," Nature Photonics, Vol. 8, 556-563, 2014.
    doi:10.1038/nphoton.2014.109

    11. Feizi, M., V. Nayyeri, and O. M. Ramahi, "Modeling magnetized graphene in the finite-difference time-domain method using an anisotropic surface boundary condition," IEEE Transactions on Antennas and Propagation, Vol. 66, 233-241, 2018.
    doi:10.1109/TAP.2017.2768081

    12. Amanatiadis, S. A., N. V. Kantartzis, T. Ohtani, and Y. Kanai, "Precise modeling of magneticallybiased graphene through a recursive convolutional FDTD method," IEEE Transactions on Magnetics, Vol. 54, 233-241, 2018.
    doi:10.1109/TMAG.2017.2749558

    13. Wang, X. H., W. Y. Yin, and Z. Chen, "Matrix exponential FDTD modeling of magnetized graphene sheet," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1129-1132, 2013.
    doi:10.1109/LAWP.2013.2281053

    14. Cao, Y. S., P. Li, L. J. Jiang, and A. E. Ruehli, "The derived equivalent circuit model for magnetized anisotropic graphene," IEEE Antennas and Wireless Propagation Letters, Vol. 65, 948-953, 2017.
    doi:10.1109/TAP.2016.2633222

    15. Shao, Y., J. J. Yang, and M. Huang, "A review of computational electromagnetic methods for graphene modeling," International Journal of Antennas and Propagation, Vol. 81, 1-6, 2016.
    doi:10.1155/2016/7478621

    16. Azizi, M., M. Boussouis, H. Aubert, and H. Baudrand, "A three-dimensional analysis of planar discontinuities by an iterative method," Microwave and Optical Technology Letters, Vol. 13, 372-376, 1996.
    doi:10.1002/(SICI)1098-2760(19961220)13:6<372::AID-MOP16>3.0.CO;2-5

    17. N’gongo, R. S. and H. Baudrand, "A new approach for microstrip active antennas using modal FFT algorithm," IEEE Antennas and Propagation Society International Symposium, Vol. 3, 1700-1703, 1999.

    18. Gharsallah, A., A. Gharbi, and H. Baudrand, "Efficient analysis of multiport passive circuits using the iterative technique," Electromagnetics, Vol. 81, 73-84, 2001.
    doi:10.1080/02726340151087996

    19. Zairi, H., A. Gharsallah, A. Gharbi, and H. Baudrand, "Analysis of planar circuits using a multigrid iterative method," IEE Proceedings — Microwaves, Antennas and Propagation, Vol. 153, 109-162, 2006.
    doi:10.1049/ip-map:20050028

    20. Mami, A., H. Zairi, A. Gharsallah, and H. Baudrand, "Analysis of microwave components and circuits using the iterative method," International Journal of RF and Microwave, Vol. 81, 404-414, 2004.
    doi:10.1002/mmce.20027

    21. Aizi, M., H. Aubert, and H. Baudrand, "A new iterative method for scattering problems," Microwave Conference, Vol. 1, 255-258, 1995.

    22. Houaneb, Z., H. Zairi A. Gharsallah, and H. Baudrand, "Modeling of cylindrical resonators by wave concept iterative process in cylindrical coordinates," International Journal of Numerical Modelling: Electronic Networks, Devices and Fields, Vol. 24, 123-131, 2011.
    doi:10.1002/jnm.765

    23. Hlali, A., Z. Houaneb, and H. Zairi, "Tunable filter based on hybrid metal-graphene structures over an ultrawide terahertz band using an improved Wave Concept Iterative Process method," International Journal for Light and Electron Optics, Vol. 181, 423-431, 2018.
    doi:10.1016/j.ijleo.2018.12.091

    24. Hlali, A., Z. Houaneb, and H. Zairi, "Dual-band reconfigurable graphene-based patch antenna in terahertz band: Design, analysis and modeling using WCIP method," Progress In Electromagnetics Research C, Vol. 87, 213-226, 2018.
    doi:10.2528/PIERC18080107

    25. Hlali, A., Z. Houaneb, and H. Zairi, "Effective modeling of magnetized graphene by the wave concept iterative process method using boundary conditions," Progress In Electromagnetics Research C, Vol. 89, 121-132, 2019.
    doi:10.2528/PIERC18111514

    26. Hanson, G. W., "Dyadic Green’s functions for an anisotropic, non-local model of biased graphene," IEEE Transactions on Antennas and Propagation, Vol. 103, 101-109, 2008.

    27. Lovat, G., "Equivalent circuit for electromagnetic interaction and transmission through graphene sheets," IEEE Transactions on Electromagnetic, Vol. 54, 101-109, 2012.
    doi:10.1109/TEMC.2011.2169072

    28. Li, P. and L. J. Jiang, "Modeling of magnetized graphene from microwave to THz range by DGTD with a scalar RBC and an ADE," IEEE Transactions on Antennas and Propagation, Vol. 63, 4458-4467, 2015.
    doi:10.1109/TAP.2015.2456977

    29. Guo, Y., T. Zhang, W. Yin, and X. Wang, "Improved hybrid FDTD method for studying tunable graphene frequency-selective surfaces (GFSS) for THz-wave applications," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 358-367, 2015.
    doi:10.1109/TTHZ.2015.2399105