Vol. 89
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-01-21
Low-Profile MIMO Antenna Arrays with Left-Handed Metamaterial Structures for Multiband Operation
By
Progress In Electromagnetics Research M, Vol. 89, 1-11, 2020
Abstract
In this article, a design of two low-profile multiple-input-multiple-output (MIMO) antenna arrays based on left-handed metamaterial (LHM) structures is proposed for multiband wireless applications. The single-element antenna is a monopole antenna fed by a microstrip transmission-line loaded with a single LHM unit cell. The LHM unit cell structure consists of a right-angled bend interdigital capacitor and dual symmetrical right-angled bend shorted stub inductors. The loaded monopole antenna was previously designed to operate in the left-handed (LH) frequency region at three negative-order resconance modes (i.e. 1.39, 1.88, and 2.35 GHz). Herein, to increase the designed antenna performance in wireless communication systems, two- and four-element MIMO antenna arrays having compact sizes with overall dimensions of 21 × 35 mm2 and 35 × 35 mm2, respectively, are realized. A close uniform edge-to-edge separation between antenna elements of each configuration equals only 2 mm (0.0093λ0 at 1.39 GHz), and port isolation less than -18 dB over the entire operating bands is obtained without using extra isolation structures. Envelope correlation coefficient is evaluated, showing good field isolation. The performance of the assembled MIMO antenna arrays is verified numerically and experimentally. The given attributes make the proposed antenna arrays a suitable candidate for multiband MIMO applications.
Citation
Ayman Ayd Ramadan Saad, "Low-Profile MIMO Antenna Arrays with Left-Handed Metamaterial Structures for Multiband Operation," Progress In Electromagnetics Research M, Vol. 89, 1-11, 2020.
doi:10.2528/PIERM19112608
References

1. Sharawi, M. S., Printed MIMO Antenna Engineering, Artech House, Norwood, 2014.

2. Sharawi, M. S., "Current misuses and future prospects for printed multiple-input, multiple-output antenna systems," IEEE Antennas Propag. Mag., Vol. 59, 162-170, 2017.
doi:10.1109/MAP.2017.2658346

3. Nadeem, I. and D. O. Choi, "Study on mutual coupling reduction technique for MIMO antennas," IEEE Access, Vol. 7, 563-586, 2019.
doi:10.1109/ACCESS.2018.2885558

4. Bilal, M., R. Saleem, H. H. Abbasi, et al. "An FSS-based nonplanar quad-element UWB-MIMO antenna system," IEEE Antennas Wireless Propag. Lett., Vol. 16, 987-990, 2017.
doi:10.1109/LAWP.2016.2615884

5. Mao, C.-X. and Q.-X. Chu, "Compact coradiator UWB-MIMO antenna with dual polarization," IEEE Trans. Antennas Propag., Vol. 62, No. 9, 4474-4480, 2014.
doi:10.1109/TAP.2014.2333066

6. Chen, S.-C., Y.-S.Wang, and S.-J. Chung, "A decoupling technique for increasing the port isolation between two strongly coupled antennas," IEEE Trans. Antennas Propag., Vol. 56, No. 12, 3650-3658, 2008.
doi:10.1109/TAP.2008.2005469

7. Xia, R., S. Qu, Q. Jiang, P. Li, and Z. Nie, "An efficient decoupling feeding network for two-element microstrip antenna array," IEEE Antennas Wireless Propag. Lett., Vol. 14, 871-874, 2015.
doi:10.1109/LAWP.2014.2380786

8. Ou, Y., X. Cai, and K. Qian, "Two-element compact antennas decoupled with a simple neutralization line," Progress In Electromagnetics Research, Vol. 65, 63-68, 2017.
doi:10.2528/PIERL16111801

9. Jiang, T., T. Jiao, and Y. Li, "Array mutual coupling reduction using L-loading E-shaped electromagnetic band gap structures," Int. J. Antennas Propag., Vol. 2016, 1-9, 2016.

10. Chen, Y. S. and C. P. Chang, "Design of a four-element multiple-input multiple-output antenna for compact long-term evolution small-cell base stations," IET Microw. Antennas Propag., Vol. 10, No. 4, 385-392, 2016.
doi:10.1049/iet-map.2015.0540

11. Saad, A. A. R., "Approach for improving inter-element isolation of orthogonally polarised MIMO slot antenna over ultra-wide bandwidth," Electron. Lett., Vol. 54, No. 18, 1062-1064, 2018.
doi:10.1049/el.2018.5346

12. Saad, A. A. R. and H. A. Mohamed, "Conceptual design of a compact four-element UWB MIMO slot antenna array," IET Microw. Antennas Propag., Vol. 13, No. 2, 208-215, 2019.
doi:10.1049/iet-map.2018.5163

13. Zhu, J. and G. V. Eleftheriades, "A simple approach for reducing mutual coupling in two closely spaced metamaterial-inspired monopole antennas," IEEE Antennas Wireless Propag., Vol. 9, 379-382, 2010.
doi:10.1109/LAWP.2010.2048691

14. Kiem, N. K., H. N. B. Phuong, Q. N. Hieu, and D. N. Chien, "A novel metamaterial MIMO antenna with high isolation for WLAN applications," Int. J. Antennas Propag., Vol. 2015, 1-9, 2015.
doi:10.1155/2015/851904

15. Kahng, S., J. Jeon, J. Anguera, and T. Park, "A compact MIMO antenna using CRLH configuration double-layered folded ring radiators with planar mushroom decoupling structure," IEEE Antennas Propag. Mag., Vol. 57, No. 2, 123-130, 2015.
doi:10.1109/MAP.2015.2414515

16. Ibrahim, A. A. and M. A. Abdalla, "CRLH MIMO antenna with reversal configuration," AEU — Int. J. Electron. Commun., Vol. 70, No. 9, 1134-1141, 2016.
doi:10.1016/j.aeue.2016.05.012

17. Nandi, S. and A. Mohan, "CRLH unit cell loaded tri-band compact MIMO antenna for WLAN/WiMAX applications," IEEE Antennas Wireless Propag., Vol. 16, 1816-1819, 2017.

18. Alqadami, A. S., M. F. Jamlos, P. J. Soh, et al. "Left-handed compact MIMO antenna array based on wire spiral resonator for 5GHz wireless applications," Appl. Phys. A, Vol. 64, 123-127, 2017.

19. Caloz, C. and T. Itoh, Electromagnetic Metamaterials: Transmission Line Theory and Microwave Applications, John Wiley & Sons, NJ, 2006.

20. Ibrahim, A. A., A. M. E. Safwat, and H. El-Hennawy, "Triple-band microstrip-fed monopole antenna loaded with CRLH unit cell," IEEE Antennas Wireless Propag. Lett., Vol. 10, 1574-1550, 2011.

21. Zheng, L., X, L. Quan, H. J. Liu, and R. L. Li, "Broadband planar antenna based on CRLH structure for DVB-H and GSM-900 applications," Electron. Lett., Vol. 48, No. 43, 1443-1145, 2012.
doi:10.1049/el.2012.2913

22. Ha, J., K. Kwon, Y. Lee, and J. Choi, "Hybrid mode wideband patch antenna loaded with a planar metamaterial unit cell," IEEE Trans. Antennas Propag., Vol. 60, No. 62, 1143-1147, 2012.
doi:10.1109/TAP.2011.2173114

23. Li, H. P., G. M. Wang, X. J. Gao, and X. F. Zhang, "Multiband antenna based on loading a CPW-fed monopole with one CRLH-TL unit cell," Progress In Electromagnetics Research Letters, Vol. 47, 47-53, 2014.

24. Amani, N., M. Kamyab, A. Jafargholi, et al. "Compact tri-band metamaterial-inspired antenna based on CRLH resonant structures," Electron. Lett., Vol. 50, No. 12, 847-848, 2014.
doi:10.1049/el.2014.0875

25. Chen, L. and Y. L. Luo, "Compact filtering antenna using CRLH resonator and defected ground structure," Electron. Lett., Vol. 50, No. 21, 1496-1498, 2014.
doi:10.1049/el.2014.2703

26. Sharma, S. K. and R. K. Chaudhary, "A compact zeroth-order resonating wideband antenna with dual-band characteristics," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1670-1673, 2015.
doi:10.1109/LAWP.2015.2417889

27. Abdalla, M. A. and A. A. Ibrahim, "Multi-band meta-material antenna with asymmetric coplanar strip-fed structure," IEEE APS/USNC/URSI Int. Symp., 631-632, Vancouver, BC, July 2015.

28. Wu, P. C., L. Chen, and Y. L. Luo, "Miniaturised wideband filtering antenna by employing CRLHTL and simplified feeding structure," Electron. Lett., Vol. 51, No. 7, 548-550, 2015.
doi:10.1049/el.2015.0329

29. Li, H., Q. Zheng, J. Ding, and C. Guo, "Dual-band planar antenna loaded with CRLH unit cell for WLAN/WiMAX application," IET Microw. Antennas Propag., Vol. 12, No. 1, 132-136, 2018.
doi:10.1049/iet-map.2016.1133

30. Lee, C. J., W. Huang, A. Gummalla, and M. Achour, "Small antennas based on CRLH structures: concept, design, and applications," IEEE Antennas Propag. Magazine, Vol. 53, No. 2, 10-25, 2011.
doi:10.1109/MAP.2011.5949321

31. Chu, H. B. and H. Shirai, "A compact metamaterial quad-band antenna based on asymmetric E-CRLH unit cells," Progress In Electromagnetics Research C, Vol. 81, 171-179, 2018.
doi:10.2528/PIERC17111605

32. Saad, A. A. R., "Approach for miniaturisation of planar antenna based on CRLH structure," Electron. Lett., Vol. 55, No. 18, 977-978, 2019.
doi:10.1049/el.2019.1863

33. Vaughan, R. G., "Antenna diversity in mobile communications," IEEE Trans. Veh. Technol., Vol. 36, No. 4, 149-172, 1987.
doi:10.1109/T-VT.1987.24115