Vol. 90
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-03-06
Non-Contact and Non-Invasive Driver's Monitor Using Microwave Reflectometer
By
Progress In Electromagnetics Research M, Vol. 90, 81-88, 2020
Abstract
This paper describes the measurement of a driver's instantaneous heart rate corresponding to R-R interval in electrocardiogram and heart-rate variability (HRV) using 24 GHz radar reflectometers. Elimination of the spurious component due to random movement of a driver has been the most difficult problem for microwave measurement. Auto-gain control of the receiver, template matching and cross-correlation technique among multiple reflectometers enable motion artifact elimination, signal peak detection, and data processing for various parameters. The measurement of vital signals is considered useful for predicting the change in a driver's state, such as a heart attack as well as detecting drowsy driving, drunk driving, and fatigue.
Citation
Atsushi Mase Yuichiro Kogi Toru Maruyama Tokihiko Tokuzawa Masaki Kunugita Tatsuya Koike Hiroyasu Hasegawa , "Non-Contact and Non-Invasive Driver's Monitor Using Microwave Reflectometer," Progress In Electromagnetics Research M, Vol. 90, 81-88, 2020.
doi:10.2528/PIERM20010103
http://www.jpier.org/PIERM/pier.php?paper=20010103
References

1. Lin, J. C., "Non-invasive microwave measurement of respiration," Proc. IEEE, Vol. 3, 1530, 1975.
doi:10.1109/PROC.1975.9992

2. Pedersen, P. C., C. C. Johnson, C. H. Durney, and D. G. Bragg, "An investigation of the use of microwave radiation for pulmonary diagnostics," IEEE Trans. Biomed. Eng., Vol. 23, 410, 1976.
doi:10.1109/TBME.1976.324653

3. Griffin, D. W., "MW interferometers for biological studies," Microwave J., Vol. 21, 69, 1987.

4. Lin, J. C., J. Kiernicki, M. Kiernicki, and P. B. Wollschlaeger, "Microwave apexcardiography," IEEE Trans. Microw. Theory Tech., Vol. 27, 618, 1979.
doi:10.1109/TMTT.1979.1129682

5. Chen, K.-M., D. Misra, H. Wang, H.-R. Chuang, and E. Postow, "An X-band microwave life-detection system," IEEE Trans. Biomed. Eng., Vol. 33, 697, 1986.
doi:10.1109/TBME.1986.325760

6. Mase, A., Y. Kogi, D. Kuwahara, Y. Nagayama, N. Ito, T. Maruyama, H. Ikezi, X. Wang, M. Inutake, T. Tokuzawa, J. Kohagura, M. Yoshikawa, S. Shinohara, A. Suzuki, F. Sakai, M. Yamashika, B. J. Tobias, C. Muscatello, X. Ren, M. Chen, C. W. Domier, N. C. Luhmann, and Jr., "Development and application of radar reflectometer using micro to infrared waves," Advances in Physics: X, Vol. 3, 633, 2018.
doi:10.1080/23746149.2018.1472529

7. Task force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology, "Heart rate variability, standards of measurement, physiological interpretation, and clinical use," Circulation, Vol. 93, 1043, 1996.
doi:10.1161/01.CIR.93.5.1043

8. Wiklund, U., M. Akay, and U. Niklasson, "Short-term analysis of heart-rate variability of adapted wavelet transforms," IEEE Eng. Med. Biol. Mag., Vol. 16, 113, 1997.
doi:10.1109/51.620502

9. Duvnjaek, L., S. Vuckovic, N. Car, and Z. Metelko, "Relationship between autonomic function, 24-h blood pressure, and albuminuria in normotensive, normoalbuminuric patients with Type 1 diabetes," J. Diabetes Complications, Vol. 15, 314, 2001.
doi:10.1016/S1056-8727(01)00164-7

10. Takada, M., T. Ebara, and Y. Sakaki, "The acceleration plethysmography system as a new physiological technology for evaluating autonomic modulations," Health Eval. Promot., Vol. 35, 373, 2008.
doi:10.7143/jhep.35.373

11. Suzuki, S., T. Matsui, H. Imuta, M. Uenoyama, H. Yura, M. Ishihara, and M. Kawakami, "A novel autonomic activation measurement method for stress monitoring: non-contact measurement of heart rate variability using a compact microwave radar," Med. Biol. Eng. Comput., Vol. 46, 709, 2008.
doi:10.1007/s11517-007-0298-3

12. Maruyama, T., S. Yasuda, and A. Mase, "Heart rate variability analysis of human volunteers under noncontact, noninvasive and clothed condition using microwave reflectometry: feasibility study," J. Electrocardiology, Vol. 35, 133, 2015 (in Japanese).
doi:10.5105/jse.35.133

13. Ministry of Internal Affairs and Communications (MIC), The Radio Use Web Site, , https://www.tele.soumu.go.jp/j/adm/system/ml/small/index.htm.

14. Nagae, D. and A. Mase, "Measurement of heart rate variability and stress evaluation by using microwave reflectometric vital signal sensing," Rev. Sci. Instrum., Vol. 81, 094301/1-10, 2010.
doi:10.1063/1.3478017

15. Mase, A. and D. Nagae, "System for measuring a peak frequency of a signal for analyzing condition of a subject,", US Patent, 9186079, 2015.