Vol. 92
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-05
The Modal Expansion Theory Applied to 3-D Metamaterial Waveguides Characterization
By
Progress In Electromagnetics Research M, Vol. 92, 31-41, 2020
Abstract
In this article, the Modal Expansion Theory (MET) is applied to 3-D metamaterial waveguides. The equivalent surface impedances of the metamaterial are computed thanks to an open software: GetDP, based on a 3-D Finite-Element-Method (FEM). This program is called during the MET algorithm, which allows considering the frequency and incidence angle dependency of the surface impedances of the metamaterial to compute the dispersion diagrams and the field cartography. To validate the dispersion diagrams obtained with this technique, another FEM commercial software (HFSS) is used as a reference.
Citation
Lucille Kuhler Nathalie Raveu Gwenn Le Fur Luc Duchesne , "The Modal Expansion Theory Applied to 3-D Metamaterial Waveguides Characterization," Progress In Electromagnetics Research M, Vol. 92, 31-41, 2020.
doi:10.2528/PIERM20010804
http://www.jpier.org/PIERM/pier.php?paper=20010804
References

1. Wu, Q., C. P. Scarborough, M. D. Gregory, D. H. Werner, R. K. Shaw, and E. Lier, "Broadband metamaterial-enabled hybrid-mode horn antennas," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010.

2. Scarborough, C. P., Q. Wu, M. D. Gregory, D. H. Werner, R. K. Shaw, and E. Lier, "Broadband metamaterial soft-surface horn antennas," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010.

3. Shaw, R. K., E. Lier, and C.-C. Hsu, "Profiled hard metamaterial horns for multibeam reflectors," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010.

4. Lier, E., R. K. Shaw, D. H. Werner, Q. Wu, C. P. Scarborough, and M. D. Gregory, "Statuts on meta-horn development - Theory and experiments," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010.

5. Kildal, P.-S. and E. Lier, "Hard horns improve cluster feeds of satellite antennas," Electron. Lett., Vol. 24, No. 8, 491-492, Apr. 1988.

6. Thomas, B., "A method of synthesizing radiation patterns with axial symmetry," IEEE Trans. Antennas Propag., Vol. 14, No. 5, 654-656, Sep. 1966.

7. Lier, E., "Review of soft and hard horn antennas, including metamaterial-based hybrid-mode horns," IEEE Trans. Antennas Propag. Mag., Vol. 52, No. 2, 31-39, Apr. 2010.

8. Pollock, J. G. and A. K. Iyer, "Below-cutoff propagation in metamaterial-lined circular waveguides," IEEE Trans. Microw. Theory Techn., Vol. 61, No. 9, 3169-3178, Sep. 2013.

9. Pollock, J. G. and A. K. Iyer, "Radiation characteristics of miniaturized metamaterial-lined waveguide probe antennas," Proc. 2015 IEEE Int. Symp. on Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, 1734-1735, Vancouver, BC, Canada, Jul. 2015.

10. Pollock, J. G. and A. K. Iyer, "Miniaturized circular-waveguide probe antennas using metamaterial liners," IEEE Trans. Antennas Propag., Vol. 63, No. 1, 428-433, Jan. 2015.

11. Pollock, J. G. and A. K. Iyer, "Experimental verification of below-cutoff propagation in miniaturized circular waveguides using anisotropic ENNZ metamaterial liners," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 4, 1297-1305, Apr. 2016.

12. Ma, X., C. Huang, M. Pu, C. Hu, Q. Feng, and X. Luo, "Single-layer circular polarizer using metamaterial and its application in antenna," Microw. Opt. Technol. Lett., Vol. 54, No. 7, 1770-1774, 2012.

13. Huang, Y., L. Yang, J. Li, Y. Wang, and G. Wen, "Polarization conversion of metasurface for the application of wide band low-profile circular polarization slot antenna," Appl. Phys. Lett., Vol. 109, No. 5, 054101, 2016.

14. Zhu, H. L., S. W. Cheung, X. H. Liu, and T. I. Yuk, "Design of polarization reconfigurable antenna using métasurfaces," IEEE Trans. Antennas Propag., Vol. 62, No. 6, 2891-2898, 2014.

15. Schurig, D., J. J. Mock, B. J. Justice, S. A. Cummer, J. B. Pendry, A. F. Starr, and D. R. Smith, "Metamaterial electromagnetic cloak at microwave frequencies," Science, Vol. 314, No. 5801, 977-980, Nov. 2006.

16. Jia, Y., Y. Liu, Y. J. Guo, K. Li, and S.-X. Gong, "Broadband polarization rotation reflective surfaces and their applications to RCS reduction," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 179-188, 2015.

17. Yang, J. J., Y. Z. Cheng, C. C. Ge, and R. Z. Gong, "Broadband polarization conversion metasurface based on metal cut-wire structure for radar cross section reduction," Materials, Vol. 11, No. 4, 626, 2018.

18. Zheng, Q., C. Guo, H. Li, and J. Ding, "Broadband radar cross-section reduction using polarization conversion métasurfaces," Int. J. Microw. Wirel. Technol., Vol. 10, No. 2, 197-206, 2018.

19. Liu, Y., K. Li, Y. Jia, Y. Hao, S. Gong, and Y. J. Guo, "Wideband RCS reduction of a slot array antenna using polarization conversion métasurfaces," IEEE Trans. Antennas Propag., Vol. 64, No. 1, 326-331, 2015.

20. Zhang, L. and T. Dong, "Low RCS and high-gain CP microstrip antenna using SA-MS," Electron. Lett., Vol. 53, No. 6, 375-376, 2017.

21. Li, K., Y. Liu, Y. Jia, and Y. J. Guo, "A circularly polarized high-gain antenna with low RCS over a wideband using chessboard polarization conversion métasurfaces," IEEE Trans. Antennas Propag., Vol. 65, No. 8, 4288-4292, 2017.

22. Long, M., W. Jiang, and S. Gong, "Wideband RCS reduction using polarization conversion metasurface and partially reflecting surface," IEEE Antennas Wirel. Propag. Lett., Vol. 16, 2534-2537, 2017.

23. Sharma, A., D. Gangwar, B. Kumar Kanaujia, S. Dwari, and S. Kumar, "Design of a wideband polarisation conversion metasurface and its application for RCS reduction and gain enhancement of a circularly polarised antenna," IET Microw. Antennas Propag., Vol. 13, No. 9, 1427-1437, Jul. 2019, doi: 10.1049/iet-map.2018.6002.

24. Shelby, R. A., D. R. Smith, and S. Schultz, "Experimental verification of a negative index of refraction," Science, Vol. 292, No. 5514, 77-79, Apr. 2001.

25. Smith, D. R., W. J. Padilla, D. C. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneoustly negative permeability and permittivity," Phys. Rev. Lett., Vol. 84, No. 18, 4184-4187, May 2000.

26. Veselago, V. G., "The electrodynamics of substances with simultaneously negative values of ε and μ," Sov. Phys. Usp., Vol. 10, No. 4, 509-514, 1968.

27. Ziolkowski, R. W. and E. Heyman, "Wave propagation in media having negative permittivity and permeability," Phys. Rev. E, Stat. Phys. Plasmas Fluids Relat. Interdiscip. Top., Vol. 64, No. 5, Art. no. 056625, Dec. 2001.

28. Wu, Q., M. D. Gregory, D. H. Werner, P. L. Werner, and E. Lier, "Nature-inspired design of soft, hard and hybrid metasurfaces," Proc. IEEE Antennas Propag. Soc. Int. Symp., 1-4, Toronto, ON, Canada, Jul. 2010.

29. Byrne, B., N. Raveu, N. Capet, G. Le Fur, and L. Duchesne, "Modal analysis of rectangular waveguides with 2D metamaterials," Progress In Electromagnetics Research C, Vol. 70, 165-173, 2016.

30. Byrne, B., "Etude et conception de guides d'onde et d'antennes cornets à métamatériaux,", Ph.D. dissertation, These de doctorat d'état, Univ. Toulouse, Toulouse, France, 2016.

31. Kuhler, L., G. Le Fur, L. Duchesne, and N. Raveu, "The propagation characteristics of 2-D metamaterial waveguides using the modal expansion theory," IEEE Trans. Microw. Theory Techn., Vol. 66, No. 10, 4319-4326, Oct. 2018.

32. Kuhler, L., G. Le Fur, L. Duchesne, and N. Raveu, "Modal analysis of cylindrical waveguides with 2-D metamaterial wall," Proc. META 2018 - The 9th Int. Conf.Metamaterials, Photonic Crystals Plasmonics, Marseille, France, 2018.

33. Kuhler, L., N. Raveu, G. Le Fur, and L. Duchesne, "Théorie modale élargie appliquée aux guides d'onde cylindriques à métamatériaux," Proc. XXIème Journées Nationales Microondes, Caen, France, 2019.

34. Warecka, M., R. Lech, and P. Kowalczyk, "Efficient finite element analysis of axially symmetrical waveguides and waveguide discontinuities," IEEE Trans. Microw. Theory Tech., Vol. 67, No. 11, 4291-4297, 2019.

35. Byrne, B., N. Raveu, N. Capet, G. Le Fur, and L. Duchesne, "Reduction of rectangular waveguide cross-section with metamaterials: A new approach," Proc. 9th Int. Congr. Adv. Electromagn. Mater. Microw. Opt. (METAMATERIALS), 40-42, Oxford, U.K., Sep. 7-12, 2015.

36. Byrne, B., N. Capet, and N. Raveu, "Dispersion properties of corrugated waveguides based on the modal theory," Proc. 8th Eur. Conf. on Antennas Propag., 1-3, The Hague, The Netherland, Apr. 6-11, 2014.

37. Raveu, N., B. Byrne, L. Claudepierre, and N. Capet, "Modal theory for waveguides with anisotropic surface impedance boundaries," IEEE Trans. Microw. Theory Techn., Vol. 64, No. 4, 1153-1162, Apr. 2016.

38. Verma, P. K., R. Kumar, and M. Singh, "Design of a shaped omni directional circular waveguide antenna," Applied Electromagn. Conf. (AEMC), Kolkata, India, Dec. 14-16, 2009.

39. Tang, J., L. Fang, and H. Cheng, "A low sidelobe and high gain omni-directional COCO antenna array," Proc. Asia-Pacific Conf. Antennas Propag. (APCAP), Harbin, China, Jul. 26-29, 2014.

40. Güngör, I. and A. Ünal, "Design of a verticaly polarized omni-directional antenna at Ka-band," IEEE Int. Symp. Antennas Propag. (APSURSI), Fajardo, Puerto Rico, Jun. 26-Jul. 1, 2016.

41. Granet, G. J. C., "Design of corrugated horns: A primer," IEEE Trans. Antennas Propag., Vol. 47, No. 2, 76-84, Jul. 2005.

42. Clarricoats, P. J. B., "Analysis of spherical hybrid modes in a corrugated conical horn," Electron. Lett., Vol. 5, No. 9, 189-190, May 1969.

43. Lier, E., "Hybrid-mode horn antenna with design-specific aperture distribution and gain," Proc. 2015 IEEE Int. Symp. on Antennas Propag. USNC/URSI Nat. Radio Sci. Meeting, Columbus, OH, USA, Jun. 22-27, 2003.

44. Clarricoats, P. J. B. and A. David Olver, Corrugated Horns for Microwave Antennas, Peregrinus, London, U.K., 1984.

45. Dular, P. and C. Geuzaine, "GetDP reference manual: The documentation for GetDP 3.0 - A general environment for the treatment of discrte problems,", Liège, Belgium, 2018.

46. Thomas, B. M. A. and H. C. Minnett, "Modes of propagation in cylindrical waveguides with anisotropic walls," Proc. Inst. Electrical Engineers, Vol. 125, No. 10, 929-932, Oct. 1978.

47. Geuzaine, C. and J.-F. Remacle, "Gmsh: A three-dimensional finite element mesh generator with built-in pre- and post-processing facilities," Int. J. for Numer. Methods Eng., Vol. 79, No. 11, 1309-1331, 2009.