Vol. 90
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-04-01
Development of Circular Loop Frequency Selective Surface Using 3-D Printing Technique
By
Progress In Electromagnetics Research M, Vol. 90, 195-203, 2020
Abstract
This paper discusses a circular loop frequency selective surface (FSS) using a 3-D (three dimensional) printed technique. The proposed FSS design consists of a metallic patch having a circular loop printed on one side of Acrylonitrile Butadiene Styrene (ABS) material. This design is used for harmonic radar applications at 5 GHz resonant frequency. Various FSS parameters are discussed to show the effect on the resonant frequency. To make fabrication process easier and cost-effective, transmitting and receiving antennas are also printed using a 3-D printing material. 3-D printing offers cost-effective fabrication technique compared with other conventional techniques and helps in rapid prototyping. The fabricated prototype is validated with the experimental results that show good agreement between simulated results and the measured ones.
Citation
Deepika Singh Abhinav Jain Rana Pratap Yadav , "Development of Circular Loop Frequency Selective Surface Using 3-D Printing Technique," Progress In Electromagnetics Research M, Vol. 90, 195-203, 2020.
doi:10.2528/PIERM20011402
http://www.jpier.org/PIERM/pier.php?paper=20011402
References

1. Munk, B. A., Frequency Selective Surfaces: Theory and Design, John Wiley & Sons, 2005.

2. Reed, J. A. and D. M. Byrne, "Frequency-selective surfaces with multiple apertures within a periodic cell," JOSA A, Vol. 15, 660-668, Mar. 1998.
doi:10.1364/JOSAA.15.000660

3. Sievenpiper, D. F., "High-impedance electromagnetic surfaces,", 1998.
doi:10.1364/JOSAA.15.000660

4. Ott, R. H., R. G. Kouyoumjian, and L. Peters, "Scattering by a two-dimensional periodic array of narrow plates," Radio Science, Vol. 2, 1347-1359, Nov. 1967.
doi:10.1002/rds19672111347

5. Ebrahimi, A., S. Nirantar, W. Withayachumnankul, M. Bhaskaran, S. Sriram, S. F. Al-Sarawi, and D. Abbott, "Second-order terahertz bandpass frequency selective surface with miniaturized elements," IEEE Transactions on Terahertz Science and Technology, Vol. 5, 761-769, Jul. 2015.
doi:10.1109/TTHZ.2015.2452813

6. Cong, L., X. Cao, and T. Song, "Ultra-wideband RCS reduction and gain enhancement of aperture-coupled antenna based on hybrid-FSS," Radioengineering, Vol. 26, 1041, Dec. 2017.
doi:10.13164/re.2017.1041

7. Zhang, W., J. Y. Li, and J. Xie, "A broadband linear-to-circular transmission polarizer based on right-angled frequency selective surfaces," International Journal of Antennas and Propagation, 2017.

8. Chakravarty, S., R. Mittra, and N. R. Williams, "On the application of the microgenetic algorithm to the design of broad-band microwave absorbers comprising frequency-selective surfaces embedded in multilayered dielectric media," IEEE Transactions on Microwave Theory and Techniques, Vol. 49, 1050-1059, Jun. 2001.
doi:10.1109/22.925490

9. Parker, E. A., S. Massey, M. Shelley, and R. Pearson, "Application of FSS structures to selectively control the propagation of signals into and out of buildings Annex 5: Survey of active FSS," ERA Technology, Tech. Rep. Ofcom AY4464A Project, 2004.

10. Jain, A., R. P. Yadav, and S. Kumar, "Design and development of high power variable dual-directional radio frequency coupler," IET Microwaves, Antennas & Propagation, Vol. 13, 2544-2550, Aug. 2019.
doi:10.1049/iet-map.2018.5855

11. Jain, A., R. P. Yadav, and S. Kumar, "Design and development of resonant loop antenna for mock-up ion cyclotron resonance frequency system of tokamak," IET Microwaves, Antennas & Propagation, Vol. 13, 976-981, 2019.
doi:10.1049/iet-map.2018.5797

12. Jain, A., R. P. Yadav, and S. V. Kulkarni, "Design and development of 2 kW, 3 dB hybrid coupler for the prototype ion cyclotron resonance frequency (ICRF) system," International Journal of Microwave and Wireless Technologies, Vol. 11, 1-6, Feb. 2019.
doi:10.1017/S175907871800137X

13. Abadi, S. M. A. M. H., M. Li, and N. Behdad, "Harmonic-suppressed miniaturized-element frequency selective surfaces with higher order bandpass responses," IEEE Transactions on Antennas and Propagation, Vol. 62, No. 5, 2562-2571, 2014.
doi:10.1109/TAP.2014.2303822

14. Chieh, J. C. S., B. Dick, S. Loui, and J. D. Rockway, "Development of a Ku-band corrugated conical horn using 3-D print technology," IEEE Antennas and Wireless Propagation Letters, Vol. 13, 201-204, Jan. 2014.
doi:10.1109/LAWP.2014.2301169

15. Kronberger, R. and P. Soboll, "3D-printed frequency selective surfaces for microwave absorbers," IEEE International Symposium on Antennas and Propagation (ISAP), 178-179, Oct. 2016.

16. O’Neal, M. E., D. A. Landis, E. Rothwell, L. Kempel, and D. Reinhard, "Tracking insects with harmonic radar: A case study," American Entomologist, Vol. 50, 212-218, Oct. 2004.

17. Moore, J. D., "Acrylonitrile-butadiene-styrene (ABS) --- A review," Composites, Vol. 4, 118-130, May 1973.
doi:10.1016/0010-4361(73)90585-5

18. Liu, N., X. Sheng, C. Zhang, and D. Guo, "Design of frequency selective surface structure with high angular stability for radome application," IEEE Antennas and Wireless Propagation Letters, Vol. 17, 138-141, Nov. 2017.

19. Samaddar, P., S. De, S. Sarkar, S. Biswas, D. C. Sarkar, and P. P. Sarkar, "Study on dual wide band frequency selective surface for different incident angles," Int. J. Soft Comput. Eng., Vol. 2, 340-342, Jan. 2013.

20. Balanis, C. A., "Antenna Theory: Analysis and Design," John Wiley & Sons, 2016.

21. Huang, F. C., C. N. Chiu, T. L. Wu, and Y. P. Chiou, "A circular-ring miniaturized-element metasurface with many good features for frequency selective shielding applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 57, 365-374, Jan. 2015.
doi:10.1109/TEMC.2015.2389855

22. Behdad, N., M. Al-Joumayly, and M. Salehi, "A low-profile third-order bandpass frequency selective surface," IEEE Transactions on Antennas and Propagation, Vol. 57, 460-466, Mar. 2009.
doi:10.1109/TAP.2008.2011202

23. Bharti, G., K. R. Jha, G. Singh, G., and R. Jyoti, "Angular stable, dual-polarized and multiband modified circular ring frequency selective surface," Frequenz, Vol. 69, 199-206, May 2015.

24. Bharti, G., K. R. Jha, G. Singh, and R. Jyoti, "Design of angular and polarization stable modified circular ring frequency selective surface for satellite communication system," International Journal of Microwave and Wireless Technologies, Vol. 8, 899-907, Sep. 2016.
doi:10.1017/S1759078715000331

25. Ghosh, S. and S. Lim, "A miniaturized bandpass frequency selective surface exploiting 3D printing technique," IEEE Antennas and Wireless Propagation Letters, May 2019.