Vol. 92
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-15
Estimation and Analysis of the Radio Refractivity, Its Gradient and the Geoclimatic Factor in Arctic Regions
By
Progress In Electromagnetics Research M, Vol. 92, 181-192, 2020
Abstract
In this paper, local meteorological data of one year have been used to calculate the surface atmospheric radio refractivity (N) and estimate the vertical refractivity gradient (dN1) as well as the geoclimatic factor (K) in the lowest atmospheric layer above the ground surface in the station Kuujjuaq (Quebec, Canada). In this region, the climate is arctic, characterized by very long and very cold winters (on average the temperature is below -20˚C for almost 240 days per year). The precipitations are almost nonexistent, and the vegetation is scarce. Average daily, monthly, seasonal, and yearly variations of the N, dN1, and K are estimated and analysed. The obtained values of these indices are compared to the corresponding values provided by the ITU. The results show that the more negative values of dN1 lie in the summer season. This is mainly due to the important variations of the temperature and humidity during this season. However, the estimated values lie in the limits mostly corresponding to standard refraction.
Citation
Yamina Bettouche, Basile Agba, Ammar B. Kouki, Huthaifa Obeidat, Ali Alabdullah, Fathi Abdussalam, Sabir Ghauri, and Raed A. Abd-Alhameed, "Estimation and Analysis of the Radio Refractivity, Its Gradient and the Geoclimatic Factor in Arctic Regions," Progress In Electromagnetics Research M, Vol. 92, 181-192, 2020.
doi:10.2528/PIERM20020709
References

1. Grabner, M., et al. "Multipath fading measurement and prediction on 10 GHz fixed terrestrial link," 15th Conference on Microwave Techniques COMITE 2010, 145-148, IEEE, 2010.
doi:10.1109/COMITE.2010.5481330

2. Bogucki, J. and E. Wielowieyska, "Empirical season's fadings in radio communication at 6 GHz band," Journal of Telecommunications and Information Technology, 48-52, 2009.

3. Adediji, A., et al. "Radio refractivity measurement at 150 m altitude on TV tower in Akure, South West Nigeria," Journal of Engineering and Applied Sciences, Vol. 2, No. 8, 1308-1313, 2007.

4. Grabner, M., et al. "Parameters of vertical profiles of temperature humidity and refractive index of air in the lowest troposphere," Proc. of 9th International Symposium on Tropospheric Profiling (ISTP), 2012.

5. Priestley, J. and R. Hill, "Measuring high-frequency humidity, temperature and radio refractive index in the surface layer," Journal of Atmospheric and Oceanic Technology, Vol. 2, No. 2, 233-251, 1985.
doi:10.1175/1520-0426(1985)002<0233:MHFHTA>2.0.CO;2

6. Kablak, N., "Refractive index and atmospheric correction to the distance to the Earth's artificial satellites," Kinematics and Physics of Celestial Bodies, Vol. 23, No. 2, 84-88, 2007.
doi:10.3103/S0884591307020079

7. Union, I. T., "Propagation data and prediction methods required for the design of terrestrial line-of-sight systems," Recommendation of ITU-R, 530-15, Geneva, 2015.

8. Norland, R., "Temporal variation of the refractive index in coastal waters," 2006 International Radar Symposium, 1-4, IEEE, 2006.

9. Boumis, M., D. Rezacova, and Z. Sokol, "Calculation of vertical gradient of atmospheric refractivity making use of 3D objective analysis technique," Electronics Letters, Vol. 35, No. 18, 1583-1584, 1999.
doi:10.1049/el:19991089

10. Grabner, M. and V. Kvicera, "Clear-air propagation modeling using parabolic equation method," Radioengineering-Prague, Vol. 12, No. 4, 50-54, 2003.

11. Ali, S., et al. "Statistical estimation of tropospheric radio refractivity derived from 10 years meteorological data," Journal of Atmospheric and Solar-Terrestrial Physics, Vol. 77, 96-103, 2012.
doi:10.1016/j.jastp.2011.12.001

12. ITU "ITU-R P.453-11: The radio refractive index: Its formula and refractivity data," ITU-R, Geneva, 2015.

13. Brussaard, G., "Handbook on radiometeorology," International Telecommunication Union, Geneva, 1996.

14. Canada, G. O., "Données climatiques historiques,", February 09, 2019, Available from: http://climat.meteo.gc.ca/.

15. ITU "Reference standard atmospheres," Recommendation of ITU-R, 835-6, Geneva, 2017.

16. Liebe, H. J., "A contribution to modeling atmospheric millimeter-wave properties," Frequenz, Vol. 41, No. 1-2, 31-36, 1987.
doi:10.1515/FREQ.1987.41.1-2.31

17. Johnsnhweather "Vapor pressure,", October 09, 2019, Available from: http://www.johnsnhweather.com/formulas/vaporPressure.html.

18. Zilinskas, M., M. Tamosiunaite, M. Tamosiuniene, E. Valma, and S. Tamosiunas, "Gradient of radio refractivity in troposphere," PIERS Proceedings, 603-607, Moscow, Russia, August 19-23, 2012.

19. Turton, J., D. Bennetts, and S. Farmer, "An introduction to radio ducting," Meteorological Magazine, Vol. 117, 245-254, 1393, 1988.

20. AbouAlmal, A., et al. "Statistical analysis of refractivity gradient and β0 parameter in the gulf region," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 12, 6250-6254, 2013.
doi:10.1109/TAP.2013.2279999