Vol. 92
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-11
Formulation of THz Sensor Array Systems with Metamaterials
By
Progress In Electromagnetics Research M, Vol. 92, 137-145, 2020
Abstract
The complete analytical formulation of periodic structures using metamaterials formed with split ring resonators (SRRs) is developed. The periodic structure modeling is based on coplanar waveguide transmission line method and network parameters. The full effect of mutual inductances in the array design is integrated for the first time using curve fitting techniques with electromagnetic simulator. The simplified equivalent circuit including the effect of mutual inductance is presented. The proposed formulation is then used to design a unit cell composed of two SRRs of the sensor array. The analytical method is then verified with simulation results. The prototype of the unit cell has then been manufactured and measured at different frequencies. The analytical, simulation, and measurement results are compared, and agreement has been confirmed.
Citation
Brinta Chowdhury Abdullah Eroglu , "Formulation of THz Sensor Array Systems with Metamaterials," Progress In Electromagnetics Research M, Vol. 92, 137-145, 2020.
doi:10.2528/PIERM20022101
http://www.jpier.org/PIERM/pier.php?paper=20022101
References

1. Veselago, V., "The electrodynamics of substances with simultaneously negative values of permittivity and permeability," Usp. Fiz. Nauk, Vol. 92, 517, 1967.
doi:10.3367/UFNr.0092.196707d.0517

2. Pendry, J. B., A. Holden, W. Stewart, and I. Youngs, "Extremely low frequency plasmons in metallic mesostructures," Physical Review Letters, Vol. 76, No. 25, 4773, 1996.
doi:10.1103/PhysRevLett.76.4773

3. Pendry, J. B., A. J. Holden, D. J. Robbins, and W. Stewart, "Magnetism from conductors and enhanced nonlinear phenomena," IEEE Transactions on Microwave Theory Techniques, Vol. 47, No. 11, 2075-2084, 1999.
doi:10.1109/22.798002

4. Yen, T.-J., et al., "Terahertz magnetic response from artificial materials," Science, Vol. 303, No. 5663, 1494-1496, 2004.
doi:10.1126/science.1094025

5. Smith, D. R., W. J. Padilla, D. Vier, S. C. Nemat-Nasser, and S. Schultz, "Composite medium with simultaneously negative permeability and permittivity," Physical Review Letters, Vol. 84, No. 18, 4184, 2000.
doi:10.1103/PhysRevLett.84.4184

6. Martın, F., J. Bonache, F. A. Falcone, M. Sorolla, and R. Marqués, "Split ring resonator-based left-handed coplanar waveguide," Applied Physics Letters, Vol. 83, No. 22, 4652-4654, 2003.
doi:10.1063/1.1631392

7. Aznar, F., et al., "Characterization of miniaturized metamaterial resonators coupled to planar transmission lines through parameter extraction," Journal of Applied Physics, Vol. 104, No. 11, 114501, 2008.
doi:10.1063/1.3021109

8. Naqui, J., A. Fernández-Prieto, F. Mesa, F. Medina, and F. Martín, "Effects of inter-resonator coupling in split ring resonator loaded metamaterial transmission lines," Journal of Applied Physics, Vol. 115, No. 19, 194903, 2014.
doi:10.1063/1.4876444

9. Naqui, J., L. Su, J. Mata, and F. Martín, "Recent advances in the modeling of transmission lines loaded with split ring resonators," International Journal of Antennas Propagation, Vol. 13, 1-13, 2015.
doi:10.1155/2015/792750

10. Eroglu, A., RF Circuit Design Techniques for MF-UHF Applications, CRC Press, 2016.

11. Greenhouse, H., "Design of planar rectangular microelectronic inductors," IEEE Transactions on Parts, Hybrids, Packaging, Vol. 10, No. 2, 101-109, 1974.
doi:10.1109/TPHP.1974.1134841