Vol. 92
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-22
Millimeter-Wave Ultra-Wideband PCB 180˚ Hybrid for 12-67 GHz
By
Progress In Electromagnetics Research M, Vol. 92, 213-221, 2020
Abstract
A myriad of ultra-wideband (UWB) 180˚ hybrids have been reported that operate at frequencies below 20 GHz. However, parasitics from printed circuit board (PCB) transmission lines become significantly more problematic as the frequency is extended to mm-wave frequencies. Here, abroadside coupled transmission line hybrid is investigated for operation at 12-67 GHz. It is shown that a parasitic time delay for the odd mode exists at the junction between coupled and uncoupled transmission lines. A heterogeneous multi-layer PCB stack-up is leveraged to compensate for the junction parasitics over an ultra-wide bandwidth. Measurements have an insertion loss between 2 and 12 dB across the band, < 1.5 dB amplitude balance, < 10˚ phase balance, and > 19 dB isolation.
Citation
Carl Pfeiffer Thomas Steffen Boris Tomasic , "Millimeter-Wave Ultra-Wideband PCB 180˚ Hybrid for 12-67 GHz ," Progress In Electromagnetics Research M, Vol. 92, 213-221, 2020.
doi:10.2528/PIERM20030303
http://www.jpier.org/PIERM/pier.php?paper=20030303
References

1. Cohn, S. B. and R. Levy, "History of microwave passive components with particular attention to directional couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, 1046-1054, 1984.
doi:10.1109/TMTT.1984.1132816

2. Garay, E., M.-Y. Huang, and H. Wang, "A cascaded self-similar rat-race hybrid coupler architecture and its compact fully integrated Ka-band implementation," IEEE/MTT-S Internation Microwave Symposium - IMS, 79-82, Philadelphia, 2018.

3. Aikawa, M. and H. Ogawa, "Double-sided MICs and their applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 37, 406-413, 1989.
doi:10.1109/22.20068

4. Ho, C.-H., L. Fan, and K. Chang, "Broad-band uniplanar hybrid-ring and branch-line couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 41, 2116-2125, 1993.
doi:10.1109/22.260719

5. Fan, L., C.-H. Ho, S. Kanamaluru, and K. Chang, "Wide-band reduced-size uniplanar magic-T, hybrid-ring, and de Ronde's CPW-slot couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 43, 2749-2758, 1995.
doi:10.1109/22.475631

6. Scherr, S., S. Ayhan, G. Adamiuk, P. Pahl, and T. Zwick, "Ultrawide bandwidth-hybrid-coupler in planar technology," International Journal of Microwave Science and Technology, Vol. 2014, 486051, 2014.
doi:10.1155/2014/486051

7. Ang, K. S. and Y. C. Leong, "Converting baluns into broad-band impedance-transforming 180˚ hybrids," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, 1990-1995, 2002.
doi:10.1109/TMTT.2002.801353

8. Bialkowski, M. E. and Y. Wang, "Wideband microstrip 180˚ hybrid utilizing ground slots," IEEE Microwave and Wireless Components Letters, Vol. 20, 495-497, 2010.
doi:10.1109/LMWC.2010.2056677

9. Llamas, M. A., M. Ribo, D. Girbau, and L. Pradell, "A rigorous multimodal analysis and design procedure of a uniplanar 180˚ hybrid," IEEE Transactions on Microwave Theory and Techniques, Vol. 57, 1832-1839, 2009.
doi:10.1109/TMTT.2009.2022881

10. Pozar, D. M., Microwave Engineering, John Wiley & Sons, 2009.

11. Nakajima, M. and H. Tanabe, "A design technique for raising upper frequency limit of wide-band 180˚ hybrids," IEEE MTT-S International Microwave Symposium Digest, Vol. 2, 879-882, 1996.

12. Gruszczynski, S., K. Wincza, and K. Sachse, "Design of compensated coupled-stripline 3-dB directional couplers, phase shifters, and Magic-T's - Part II: Broadband coupled-line circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 3501-3507, 2006.
doi:10.1109/TMTT.2006.880649

13. Moghaddasi, J. and K. Wu, "Planar 180˚ hybrid couplers with non-interspersed ports for millimeter-wave applications," Journal of Microwave and Wireless Technologies, Vol. 12, 293, 2020.
doi:10.1017/S1759078719001533

14. Afroz, S. and K.-J. Koh, "W-band (92-100 GHz) phased-array receive channel with quadrature-hybrid-based vector modulator," IEEE Trans. on Circuits and Systems - I: Regular Papers, Vol. 65, 2070, 2018.
doi:10.1109/TCSI.2017.2779941

15. Hou, D., W. Hong, W. L. Goh, Y. Z. Xiong, and M. Annamalai, "CMOS hybrid couplers with improved phase inverter structure for D-band applications," IET Microwaves, Antennas & Propagation, Vol. 7, No. 7, 569, 2013.
doi:10.1049/iet-map.2012.0514

16. RF-Lambda, , Accessed January 2020, [Online]. Available: https://www.rflambda.com/pdf/hybrid/RFHB26G40GPI.pdf.

17. Pulsar, , Accessed January 2020, [Online]. Available: https://www.pulsarmicrowave.com/product/180_degree_hybrid/JSO-51-471-6S.

18. Krytar, , Accessed January 2020, [Online]. Available: https://krytar.com/pdf/4100400.pdf.

19. Sung, Y., C. Ahn, and Y.-S. Kim, "Size reduction and harmonic suppression of rat-race hybrid coupler using defected ground structure," IEEE Microwave and Wireless Components Letters, Vol. 14, 7-9, 2004.
doi:10.1109/LMWC.2003.821499

20. Settaluri, R. K., G. Sundberg, A. Weisshaar, and V. Tripathi, "Compact folded line rat-race hybrid couplers," IEEE Microwave and Guided Wave Letters, Vol. 10, 61-63, 2000.
doi:10.1109/75.843101

21. Ahn, H., I.-S. Chang, and S.-W. Yun, "Miniaturized 3-dB ring hybrid terminated by arbitrary impedances," IEEE Transactions on Microwave Theory and Techniques, Vol. 42, 2216-2221, 1994.
doi:10.1109/22.339745

22. Chang, H.-Y., P.-S. Wu, T.-W. Huang, H. Wang, C.-L. Chang, and J. G. Chern, "Design and analysis of CMOS broad-band compact high-linearity modulators for gigabit microwave/millimeter-wave applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 20-30, 2006.
doi:10.1109/TMTT.2005.860900

23. Li, T.-W., J. S. Park, and H. Wang, "A 2-24 GHz 360˚ full-span differential vector modulator phase rotator with transformer-based poly-phase quadrature network," IEEE Custom Integrated Circuits Conference (CICC), 1-4, 2015.

24. Tseng, S.-C., C. Meng, C.-H. Chang, S.-H. Chang, and G.-W. Huang, "A silicon monolithic phase-inverter rat-race coupler using spiral coplanar striplines and its application in a broadband Gilbert mixer," IEEE Transactions on Microwave Theory and Techniques, Vol. 56, 1879-1888, 2008.
doi:10.1109/TMTT.2008.927312

25. Hamed, K. W., A. P. Freundorfer, and Y. M. M. Antar, "A new broadband monolithic passive differential coupler for K/Ka-band applications," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 6, 2527, 2006.
doi:10.1109/TMTT.2006.875809

26. Chirala, M. K. and B. A. Floyd, "Millimeter-wave lange and ring-hybrid couplers in a silicon technology for E-band applications," IEEE MTT-S International Microwave Symposium Digest, 1547-1550, 2006.
doi:10.1109/MWSYM.2006.249609

27. Hou, Z. J., Y. Yang, L. Chiu, X. Zhu, and Q. Xue, "Wideband millimeter-wave on-chip quadrature coupler with improved in-band flatness in 0.13-μm SiGe technology," IEEE Electron Device Letters, Vol. 39, No. 5, 652, 2018.
doi:10.1109/LED.2018.2814997

28. Park, J. S. and H. Wang, "A transformer-based poly-phase network for ultra-broadband quadrature signal generation," IEEE Transactions on Microwave Theory and Techniques, Vol. 63, No. 12, 4444, 2015.
doi:10.1109/TMTT.2015.2496187

29. Pfeiffer, C., T. Steffen, and B. Tomasic, "UWB millimeter-wave 180 hybrid couplers," IEEE International Symposium on Antennas and Propagation and USNC-URSI Radio Science Meeting, 967-968, Atlanta, 2019.

30. Monteath, G. D., "Coupled transmission lines as symmetrical directional couplers," Proceedings of the IEE - Part B: Radio and Electronic Engineering, Vol. 102, 383-392, 1955.
doi:10.1049/pi-b-1.1955.0078

31. Shelton, J. P. and J. A. Mosko, "Synthesis and design of wide-band equal-ripple TEM directional couplers and fixed phase shifters," IEEE Transactions on Microwave Theory and Techniques, Vol. 14, 462-473, 1966.
doi:10.1109/TMTT.1966.1126305

32. Gruszczynski, S. and K. Wincza, "Generalized methods for the design of quasi-ideal symmetric and asymmetric coupled-line sections and directional couplers," IEEE Transactions on Microwave Theory and Techniques, Vol. 59, 1709-1718, 2011.
doi:10.1109/TMTT.2011.2138155

33. Gruszczynski, S., K. Wincza, and K. Sachse, "Design of compensated coupled-stripline 3-dB directional couplers, phase shifters, and magic-T's - Part I: Single-section coupled-line circuits," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, 3986-3994, 2006.
doi:10.1109/TMTT.2006.884689