Vol. 93
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-06-01
BI-Anisotropic Particles and Chiral Inclusions for Highly-Efficient Electromagnetic Energy Harvesting
By
Progress In Electromagnetics Research M, Vol. 93, 67-76, 2020
Abstract
We present an analytical analysis of a metasurface-based ambient electromagnetic energy harvesting system in which the bi-anisotropic particles loaded with a resistor are used. The proposed metasurface composed of an array of bi-anisotropic particles referred to as an electromagnetic energy harvester that can capture the ambient incident electromagnetic wave energy with a radiative to AC conversation efficiency of around 100%. The captured energy by metasurface is delivered to the load. The load acts as the input impedance of a rectification circuit in a rectenna system. The derived optimal polarizable inclusions can be applied to design bi-anisotropic metasurfaces which can be used for electromagnetic energy harvesting. Finally, the optimal dimensions of a typical chiral structure have been calculated to achieve maximum efficiency for circularly polarized propagating waves.
Citation
Hemn Younesiraad, and Mohammad Bemani, "BI-Anisotropic Particles and Chiral Inclusions for Highly-Efficient Electromagnetic Energy Harvesting," Progress In Electromagnetics Research M, Vol. 93, 67-76, 2020.
doi:10.2528/PIERM20040105
References

1. Tesla, N., Apparatus for Transmitting Electrical Energy, Google Patents, 1914.

2. Brown, W. C., "The history of power transmission by radio waves," IEEE Transactions on Microwave Theory and Techniques, Vol. 32, No. 9, 1230-1242, 1984.
doi:10.1109/TMTT.1984.1132833

3. Chin, C.-H., Q. Xue, and C. H. Chan, "Design of a 5.8-GHz rectenna incorporating a new patch antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 4, 175-178, 2005.
doi:10.1109/LAWP.2005.846434

4. Ren, Y.-J. and K. Chang, "5.8-GHz circularly polarized dual-diode rectenna and rectenna array for microwave power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 54, No. 4, 1495-1502, 2006.
doi:10.1109/TMTT.2006.871362

5. Erb, R. B., "Power from space - The tough questions: The 1995 Peter E. Glaser lecture," Acta Astronautica, Vol. 38, No. 4-8, 539-550, 1996.
doi:10.1016/0094-5765(96)82324-1

6. Valenta, C. R. and G. D. Durgin, "Harvesting wireless power: Survey of energy-harvester conversion efficiency in far-field, wireless power transfer systems," IEEE Microwave Magazine, Vol. 15, No. 4, 108-120, 2014.
doi:10.1109/MMM.2014.2309499

7. Yo, T.-C., C.-M. Lee, C.-M. Hsu, and C.-H. Luo, "Compact circularly polarized rectenna with unbalanced circular slots," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 3, 882-886, 2008.
doi:10.1109/TAP.2008.916956

8. Heikkinen, J. and M. Kivikoski, "A novel dual-frequency circularly polarized rectenna," IEEE Antennas and Wireless Propagation Letters, Vol. 2, 330-333, 2003.
doi:10.1109/LAWP.2004.824166

9. Harouni, Z., L. Cirio, L. Osman, A. Gharsallah, and O. Picon, "A dual circularly polarized 2.45-GHz rectenna for wireless power transmission," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 306-309, 2011.
doi:10.1109/LAWP.2011.2141973

10. Hagerty, J. A. and Z. Popovic, "An experimental and theoretical characterization of a broadband arbitrarily-polarized rectenna array," 2001 IEEE MTT-S International Microwave Sympsoium Digest (Cat. No. 01CH37157), Vol. 3, 1855-1858, IEEE, 2001.
doi:10.1109/MWSYM.2001.967269

11. Holloway, C. L., E. F. Kuester, J. A. Gordon, J. O'Hara, J. Booth, and D. R. Smith, "An overview of the theory and applications of metasurfaces: The two-dimensional equivalents of metamaterials," IEEE Antennas and Propagation Magazine, Vol. 54, No. 2, 10-35, 2012.
doi:10.1109/MAP.2012.6230714

12. Ra'Di, Y., C. Simovski, and S. Tretyakov, "Thin perfect absorbers for electromagnetic waves: Theory, design, and realizations," Physical Review Applied, Vol. 3, No. 3, 037001, 2015.
doi:10.1103/PhysRevApplied.3.037001

13. Ramahi, O. M., T. S. Almoneef, M. AlShareef, and M. S. Boybay, "Metamaterial particles for electromagnetic energy harvesting," Applied Physics Letters, Vol. 101, No. 17, 173903, 2012.
doi:10.1063/1.4764054

14. Almoneef, T. S., F. Erkmen, and O. M. Ramahi, "Harvesting the energy of multi-polarized electromagnetic waves," Sci. Rep., Vol. 7, No. 1, 14656, Nov. 7, 2017.
doi:10.1038/s41598-017-15298-5

15. Zhang, X., H. Liu, and L. Li, "Tri-band miniaturized wide-angle and polarization-insensitive metasurface for ambient energy harvesting," Applied Physics Letters, Vol. 111, No. 7, 071902, 2017.
doi:10.1063/1.4999327

16. Alavikia, B., T. S. Almoneef, and O. M. Ramahi, "Wideband resonator arrays for electromagnetic energy harvesting and wireless power transfer," Applied Physics Letters, Vol. 107, No. 24, 243902, 2015.
doi:10.1063/1.4937591

17. Dong, Z., F. Yang, and J. S. Ho, "Enhanced electromagnetic energy harvesting with subwavelength chiral structures," Physical Review Applied, Vol. 8, No. 4, 044026, 2017.
doi:10.1103/PhysRevApplied.8.044026

18. Asadchy, V. S., I. A. Faniayeu, Y. Ra'Di, S. Khakhomov, I. Semchenko, and S. Tretyakov, "Broadband reflectionless metasheets: Frequency-selective transmission and perfect absorption," Physical Review X, Vol. 5, No. 3, 031005, 2015.
doi:10.1103/PhysRevX.5.031005

19. Serdiukov, A., I. Semchenko, S. Tertyakov, and A. Sihvola, Electromagnetics of Bi-anisotropic Materials - Theory and Application, Gordon and Breach Science Publishers, 2001.

20. Kwon, D.-H. and D. M. Pozar, "Optimal characteristics of an arbitrary receive antenna," IEEE Transactions on Antennas and Propagation, Vol. 57, No. 12, 3720-3727, 2009.
doi:10.1109/TAP.2009.2025975

21. Niemi, T., A. O. Karilainen, and S. A. Tretyakov, "Synthesis of polarization transformers," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 6, 3102-3111, 2013.
doi:10.1109/TAP.2013.2252136

22. Tretyakov, S., Analytical Modeling in Applied Electromagnetics, Artech House, 2003.

23. Salisbury, W. W., Absorbent Body for Electromagnetic Waves, Google Patents, 1952.

24. Ra'di, Y. and S. A. Tretyakov, "Balanced and optimal bianisotropic particles: Maximizing power extracted from electromagnetic fields," New Journal of Physics, Vol. 15, No. 5, 053008, 2013.
doi:10.1088/1367-2630/15/5/053008

25. Tretyakov, S. A., F. Mariotte, C. R. Simovski, T. G. Kharina, and J.-P. Heliot, "Analytical antenna model for chiral scatterers: Comparison with numerical and experimental data," IEEE Transactions on Antennas and Propagation, Vol. 44, No. 7, 1006-1014, 1996.
doi:10.1109/8.504309

26. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.