Vol. 93
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-06-10
Design of a Beam Switchtable Superdirective Dipole for IoT Gateway
By
Progress In Electromagnetics Research M, Vol. 93, 99-108, 2020
Abstract
In this paper, a switchable beam and super-directive Electrically Small Antenna (ESA) dipole deployed at an IoT network gateway at 868 MHz is presented. It consists of one fed dipole and one loaded parasitic dipole. The nature and value of the load are obtained using the Uzkov equations, allowing determining current weighting coefficients in the case of two separately fed antennas, in order to maximize the gain and the directivity in a given direction. Reconfigurability in two directions is achieved using a pair of anti-parallel PIN diodes to steer the beam to the desired direction. The array final dimensions are 109 × 43 mm2 (0.3λ × 0.1λ) generating a high directivity of 6.8 dBi in simulation and 6.7 dBi in measurement at 868 MHz for each beam in the azimuth plane.
Citation
Sana Souai Aliou Diallo Jean-Marc Ribero Taouifik Aguili , "Design of a Beam Switchtable Superdirective Dipole for IoT Gateway," Progress In Electromagnetics Research M, Vol. 93, 99-108, 2020.
doi:10.2528/PIERM20040203
http://www.jpier.org/PIERM/pier.php?paper=20040203
References

1. Wheeler, H. A., "Fundamental limitations of small antennas," Proc. IRE, Vol. 35, No. 12, 1479-1484, Dec. 1947.
doi:10.1109/JRPROC.1947.226199

2. Harrington, R. F., "On the gain and beamwidth of directional antennas," IRE Transactions on Antennas and Propagation, 219-225, Jul. 1958.

3. Uzkov, I., "An approach to the problem of optimum directive antennae design," Comptes rendues (Do lady) de l’acad´emie des sciences de l’URSS, Vol. 53, No. 1, 35-38, 1946.

4. O’Donnell, T. H. and A. D. Yaghjian, "Electrically small superdirective arrays using parasitic element," IEEE Antennas and Propagation Society International Symposium, 3111-3114, Jul. 2006.

5. Boyle, K., "Radiation patterns and correlation of closely spaced linear antennas," IEEE Trans. Antennas Propag., Vol. 50, No. 8, 1162-1165, Aug. 2002.
doi:10.1109/TAP.2002.801367

6. Pigeon, M., A. Sharaiha, and S. Collardey, "Miniature and superdirective two elements endfire antenna array," 8th European Conference on Antennas and Propagation (EuCAP 2014), Apr. 6-11, 2014.

7. Haskou, A. and A. Sharaiha, "Integrating superdirective electrically small antenna arrays in PCBs," IEEE Antennas and Wireless Propagation Letters, Jan. 2015.

8. Haskou, A., A. Sharaiha, and S. Collardey, "Design of small parasitic loaded superdirective end-fire antenna arrays," IEEE Trans. Antennas Propag., Vol. 63, No. 12, 5456-5464, Dec. 2015.
doi:10.1109/TAP.2015.2496112

9. Harrington, R. F., "A Reactively controlled directive arrays," IEEE Trans. Antennas Propag., Vol. 26, No. 3, 390-395, May 1978.
doi:10.1109/TAP.1978.1141852

10. Milne, R., "A small adaptive array antenna for mobile communications," Antennas and Propagation Society International Symposium, Vol. 23, 797-800, 1985.

11. Zhang, T., S. Y. Yao, and Y. Wang, "Design of radiation-pattern-reconfigurable antenna with four beams," IEEE Antennas Wireless Propag. Lett., Vol. 14, 183-186, 2015.
doi:10.1109/LAWP.2014.2360098

12. Dihissou, A., A. Diallo, P. Le Thuc, and R. Staraj, "Directive and reconfigurable loaded antenna array for wireless sensor networks," Progress In Electromagnetics Research C, Vol. 84, 103-117, 2018.
doi:10.2528/PIERC18032403

13. Jacob, M. M., et al., "Broadband non-Foster matching of an electrically small loop antenna," IEEE Antennas and Propagation Society International Symposium (APSURSI), 2012.