Vol. 97

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-10-20

Design of a Long Linear Helical Subarray for High-Power Cylindrical Conformal Array Antenna

By Jian-Qiong Zhang, Pengyou Huang, Xiang-Qiang Li, and Qingfeng Wang
Progress In Electromagnetics Research M, Vol. 97, 189-200, 2020
doi:10.2528/PIERM20041302

Abstract

A Ku-band long linear helical subarray (LLHS) for a high-power cylindrical conformal array antenna has been developed. The LLHS consists of 80 helical antennas can be used to constitute conformal array of cylindrical surface. Through the research on the embedded probe structure, the adjustment of the coupling ability of different types of unit probes and the sealing method of the whole feeding, the problems of large feed reflection, the uneven coupling amount of the unit probe in the rectangular waveguide system are solved, and the LLHS which can be used in the high-power conformal array is realized. The LLHS which is 52.35λ length can obtain 25.2 dB gain, 2.31 dB axis ratio, 90% aperture efficiency, -15.65 dB reflection at 12.5 GHz, and the reflection is lower than -14 dB during 12-13 dB. In addition, it could handle a pulse power of 166 MW under vacuum condition.

Citation


Jian-Qiong Zhang, Pengyou Huang, Xiang-Qiang Li, and Qingfeng Wang, "Design of a Long Linear Helical Subarray for High-Power Cylindrical Conformal Array Antenna," Progress In Electromagnetics Research M, Vol. 97, 189-200, 2020.
doi:10.2528/PIERM20041302
http://www.jpier.org/PIERM/pier.php?paper=20041302

References


    1. Wen, J., D.-B. Chen, D. Wang, and F. Qin, "Preliminary experimental research on Ku-band MILO," IEEE Transactions on Plasma Science, Vol. 41, No. 9, 2501-2505, Sep. 2013.
    doi:10.1109/TPS.2013.2276402

    2. Nallasamy, V., et al., "Advances and present trends in magnetically insulated line oscillator," Journal of Electromagnetic Waves and Applications, Vol. 31, No. 17, 1864-1874, 2017.
    doi:10.1080/09205071.2017.1338622

    3. Guo, L., et al., "Studies of a leaky-wave phased array antenna for high-power microwave applications," IEEE Transactions on Plasma Science, Vol. 44, No. 10, 2366-2375, 2016.
    doi:10.1109/TPS.2016.2601105

    4. Pottier, S. B., F. Hamm, D. Jousse, P. Sirot, F. T. Talom, and R. Vezinet, "High pulsed power compact antenna for high-power microwaves applications," IEEE Transactions on Plasma Science, Vol. 42, No. 6, 1515-1521, Jun. 2014.
    doi:10.1109/TPS.2014.2321416

    5. Zhang, H. Y., F. S. Zhang, and F. Zhang, "A novel high-gain cavity slot antenna based on polarization twist reflector for high power microwave applications," Progress In Electromagnetics Research C, Vol. 76, 23-31, 2017.

    6. Zhao, X. and C. Yuan, "All-metal beam steering lens antenna for high power microwave applications," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 7340-7344, Dec. 2017.

    7. Lawrance, J. E. and C. G. Christodoulou, "A high-power microwave zoom antenna with metal-plate lenses," IEEE Transactions on Antennas and Propagation, Vol. 64, No. 8, 3380-3389, Aug. 2015.
    doi:10.1109/TAP.2015.2435037

    8. Li, X. and Q. Liu, "A GW level high power radial helical antenna," IEEE Transactions on Antennas and Propagation, Vol. 56, No. 9, 2943-2948, Sept. 2008.
    doi:10.1109/TAP.2008.928781

    9. Li, X. Q., Q. X. Liu, and J. Q. Zhang, "High power 12-element triangular-grid rectangular radial line helical array antenna," Progress In Electromagnetics Research C, Vol. 55, 17-24, 2014.
    doi:10.2528/PIERC14100402

    10. Peng, S. and C. Yuan, "Linearly polarised radial line slot antenna for high-power microwave application," IET Microwave Antennas & Propagation, Vol. 11, No. 5, 680-684, Apr. 2017.
    doi:10.1049/iet-map.2016.0289

    11. Lee, J. M. and J. M. Woo, "Design of array synthesis horn antenna for high power microwave applications," Progress In Electromagnetics Research, 1196-1198, 2012.

    12. He, Q. Q. and B. Z. Wang, "Radiation patterns synthesis for a conformal dipole antenna array," Progress In Electromagnetics Research, Vol. 76, 327-340, 2007.
    doi:10.2528/PIER07071801

    13. Xu, H. and B. Zhang, "Wide solid angle beam-switching conical conformal array antenna with high gain for 5G applications," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 12, 2304-2308, Dec. 2018.
    doi:10.1109/LAWP.2018.2873703

    14. Singh, P. K. and J. Saini, "Reconfigurable microstrip antennas conformal to cylindrical surface," Progress In Electromagnetics Research Letters, Vol. 72, 119-126, 2018.
    doi:10.2528/PIERL17111002

    15. Braaten, B. D. and S. Roy, "A self-adapting flexible (SELFLEX) antenna array for changing conformal surface applications," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 2, 655-665, Feb. 2013.
    doi:10.1109/TAP.2012.2226227

    16. Nechaev, Y. and I. Peshkov, "Evaluation and minimization of Cramer-Rao bound for conformal antenna arrays with directional emitters for DOA-estimation," Progress In Electromagnetics Research C, Vol. 90, 139-154, 2019.
    doi:10.2528/PIERC18111802

    17. Huang, J. Q., et al., "Novel circularly polarized SIW cavity-backed antenna with wide CP beamwidth by using dual orthogonal slot split rings," Progress In Electromagnetics Research C, Vol. 73, 97-104, 2017.
    doi:10.2528/PIERC17021706

    18. Sahnoun, N., et al., "Integrated flexible UWB/NB antenna conformed on a cylindrical surface," Progress In Electromagnetics Research Letters, Vol. 55, 121-128, 2015.
    doi:10.2528/PIERL15061809

    19. Sam, K. U. and P. Abdulla, "Truncated circular microstrip ultra wideband antenna exhibiting wideband circular polarization," Progress In Electromagnetics Research C, Vol. 99, 111-122, 2020.
    doi:10.2528/PIERC19112803

    20. Wu, Y. F. and Y. J. Cheng, "Conical conformal shaped-beam substrate integrated waveguide slot array antenna with conical-to-cylindrical transition," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 8, 4048-4056, Aug. 2017.
    doi:10.1109/TAP.2017.2716404

    21. Singh, P. K. and J. Saini, "Effect of varying curvature and inter element spacing on dielectric coated conformal microstrip antenna array," Progress In Electromagnetics Research M, Vol. 58, 11-19, 2017.
    doi:10.2528/PIERM17022012

    22. Liang, Y. and J. Zhang, "High-power dual-branch helical antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 17, No. 3, 472-475, Mar. 2018.
    doi:10.1109/LAWP.2018.2796244