Vol. 95

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-08-28

Archimedean Spiral Antenna Loaded by Frequency Selective Surface

By Jian-Yi Chu, Lin Peng, Xiao-Feng Li, and Xing Jiang
Progress In Electromagnetics Research M, Vol. 95, 199-209, 2020
doi:10.2528/PIERM20042002

Abstract

A double-layer frequency selective surface (FSS) with dual rings is used as a reflector in the design of an Archimedean spiral antenna (ASA) with low radar cross section (RCS) and uni-directional characteristics. The proposed FSS presents a stopband in the range of 2 GHz to 4.7 GHz, which is applied to ASA to form a unidirectional radiation pattern with front to back ratio (FBR) values larger than 10 dB in the stopband, and the maximum FBR value is up to 25.26 dB. Compared with the reference antenna with the same-size metallic ground, the proposed FSS reduces the RCS about 2.5-38 dB in the frequency ranges of 4.8-30 GHz. And the FSS antenna also exhibits better axial ratio characteristics in the frequency range of 2.8-8.1 GHz. The composite structure is compact, with a total height of 0.18 wavelength at the lowest analysis frequency of 2 GHz. Measured results indicate that the proposed antenna reproduces the inherent wideband of the original ASA from 1.6 GHz to 8.1 GHz. Meanwhile, the gain of the ASA is increased by 3 dBi. Full-wave simulations and measurements prove that the novel FSS reflector can be employed to replace a metallic ground which realises a uni-directional ASA with broadband low RCS, high gain and good circular polarization (CP) performance.

Citation


Jian-Yi Chu, Lin Peng, Xiao-Feng Li, and Xing Jiang, "Archimedean Spiral Antenna Loaded by Frequency Selective Surface," Progress In Electromagnetics Research M, Vol. 95, 199-209, 2020.
doi:10.2528/PIERM20042002
http://www.jpier.org/PIERM/pier.php?paper=20042002

References


    1. Jia, Y. T., Y. Liu, S. X. Gong, W. B. Zhang, and G. S. Liao, "A low-RCS and high-gain circularly polarized antenna with a low profile," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2477-2480, 2017.
    doi:10.1109/LAWP.2017.2725380

    2. Stutzman, W. L. and G. A. Thiele, Antennas Theory and Design, Wiley, New York, 1981.

    3. Nakano, H., S. Sasaki, H. Oyanagi, and J. Yamauchi, "Cavity-backed archimedean spiral antenna with strip absorber," IET Microw. Antennas Propag., Vol. 2, No. 7, 725-730, Oct. 2008.
    doi:10.1049/iet-map:20080022

    4. Bell, J. and M. Iskander, "A low-profile archimedean spiral antenna using an EBG ground plane," IEEE Antennas Wireless Propag. Lett., Vol. 3, 223-226, 2004.
    doi:10.1109/LAWP.2004.835753

    5. Amiri, M. A., C. A. Balanis, and C. R. Birtcher, "Gain and bandwidth enhancement of a spiral antenna using a circularly symmetric HIS," IEEE Antennas Wireless Propag. Lett., Vol. 16, 1080-1083, 2017.
    doi:10.1109/LAWP.2016.2622222

    6. Mohamad, S., R. Cahill, and V. Fusco, "Selective high impedance surface active region loading of Archimedean spiral antenna," IEEE Antennas Wireless Propag. Lett., Vol. 13, 810-813, 2014.
    doi:10.1109/LAWP.2014.2314860

    7. Mohamad, S., R. Cahill, and V. Fusco, "Performance of archimedean spiral antenna backed by FSS reflector," Electron. Lett., Vol. 51, No. 1, 14-16, 2015.
    doi:10.1049/el.2014.3693

    8. Peng, L., J. Y. Xie, K. Sun, X. Jiang, and S. M. Li, "Resonance-based reflector and its application in unidirectional antenna with low-profile and broadband characteristics for wireless applications," Sensors, Vol. 16, No. 12, 2092-1-2092-14, 2016.
    doi:10.3390/s16122092

    9. Peng, L., J. Y. Xie, X. F. Li, and X. Jiang, "Front to back ratio bandwidth enhancement of resonance based reflector antenna by using a ring-shape director and its time-domain analysis," IEEE Access, Vol. 5, 15318-15325, Jul. 2017.

    10. Liu, T., X. Y. Cao, J. Gao, Q. R. Zheng, W. Q. Li, and H. H. Yang, "RCS reduction of waveguide slot antenna with metamaterial absorber," IEEE Trans. Antennas Propag., Vol. 61, No. 3, 1479-1484, Mar. 2013.
    doi:10.1109/TAP.2012.2231922

    11. Zhao, Y., X. Y. Cao, J. Gao, X. Yao, and X. Liu, "A low-RCS and high-gain slot antenna using broadband metasurface," IEEE Antennas Wireless Propag. Lett., Vol. 15, 290-293, 2016.
    doi:10.1109/LAWP.2015.2442257

    12. Liu, Y., Y. W. Hao, H. Wang, K. Li, and S. X. Gong, "Low RCS microstrip patch antenna using requency-selective surface and microstrip resonator," IEEE Antennas Wireless Propag. Lett., Vol. 14, 1290-1293, 2015.
    doi:10.1109/LAWP.2015.2402292

    13. Ding, X., Y. F. Cheng, W. Shao, and B. Z. Wang, "Broadband low-RCS phased array with wide-angle scanning performance based on the switchable stacked artificial structure," IEEE Trans. Antennas Propag., Vol. 67, No. 10, 6452-6460, 2019.
    doi:10.1109/TAP.2019.2925202

    14. Jia, Y. T., Y. Liu, S. X. Gong, W. B. Zhang, and G. S. Liao, "A low-RCS and high-gain circularly polarized antenna with a low profile," IEEE Antennas Wireless Propag. Lett., Vol. 16, 2447-2480, 2017.

    15. Liu, Q., C. L. Ruan, L. Peng, and W. X. Wu, "A novel compact archimedean spiral antenna with gap-loading," Progress In Electromagnetics Research Letters, Vol. 3, 169-177, 2008.
    doi:10.2528/PIERL08032002

    16. Peng, L., K. Sun, J. Y. Xie, Y. J. Qiu, and X. Jiang, "UWB bi-directional bow-tie antenna loaded by rings," Journal of the Korean Physical Society, Vol. 69, No. 1, 22-30, Jul. 2016.
    doi:10.3938/jkps.69.22