Vol. 93
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-05-27
Low Sidelobe Cosecant-Squared Pattern Synthesis for Large Planar Array Using Genetic Algorithm
By
Progress In Electromagnetics Research M, Vol. 93, 23-34, 2020
Abstract
A cosecant-squared radiation pattern synthesis for a planar antenna array by using the genetic algorithm (GA) is presented. GA makes array synthesis flexible to achieve two desired features, namely, low peak side lobe level (PSLL) and small deviation (ripples) in the shaped beam region. In order to obtain a desired csc2 pattern with the PSLL constrained, GA optimizes both the excitation amplitude and phase weights of the array elements. Dynamic range ratio (DRR) of the excitation amplitudes is improved by eliminating the weakly excited array elements from the optimized array without distorting the obtained pattern. To illustrate the effectiveness and advantages of GA, the beam pattern with specified characteristics is obtained for the same array by using particle swarm optimization (PSO). Results show that the performances of GA and PSO are comparable when dealing with small-to-moderate planar antenna arrays. However, GA significantly outperforms PSO on large arrays. Moreover, numerical results reveal that GA is superior to PSO in terms of cost function evaluation and statistical tests.
Citation
Tarek Sallam Ahmed Attiya , "Low Sidelobe Cosecant-Squared Pattern Synthesis for Large Planar Array Using Genetic Algorithm," Progress In Electromagnetics Research M, Vol. 93, 23-34, 2020.
doi:10.2528/PIERM20042005
http://www.jpier.org/PIERM/pier.php?paper=20042005
References

1. Elliott, R. S., Antenna Theory and Design, Wiley, New York, NY, USA, 2003.
doi:10.1109/9780470544174

2. Skolnik, M., Introduction to Radar Systems, McGraw-Hill, Tokyo, 1981.

3. Woodward, P. M. and J. D. Lawson, "The theoretical precision with which an arbitrary radiation pattern may be obtained from a source of a finite size," J. IEE, Vol. 95, No. 37, 363-370, Sep. 1948.

4. Li, J.-Y., Y.-X. Qi, and S.-G. Zhou, "Shaped beam synthesis based on superposition principle and Taylor method," IEEE Trans. Antennas Propag., Vol. 65, No. 11, 6157-6160, Nov. 2017.
doi:10.1109/TAP.2017.2754468

5. Stutzman, W., "Synthesis of shaped-beam radiation patterns using the iterative sampling method," IEEE Trans. Antennas Propag., Vol. 19, No. 1, 36-41, Jan. 1971.
doi:10.1109/TAP.1971.1139892

6. Quijano, J. L. A. and G. Vecchi, "Alternating adaptive projections in antenna synthesis," IEEE Trans. Antennas Propag., Vol. 58, No. 3, 727-737, Mar. 2010.
doi:10.1109/TAP.2009.2039307

7. Haddadi, A., A. Ghorbani, and J. Rashed-Mohassel, "Cosecant-squared pattern synthesis using a weighted alternating reverse projection method," IET Microw., Antennas Propag., Vol. 5, No. 15, 1789-1795, 2011.
doi:10.1049/iet-map.2011.0056

8. Fuchs, B., A. Skrivervik, and J. R. Mosig, "Shaped beam synthesis of arrays via sequential convex optimizations," IEEE Antennas Wireless Propag. Lett., Vol. 12, 1049-1052, 2013.
doi:10.1109/LAWP.2013.2280043

9. Echeveste, J. I., M. A. G. de Aza, and J. Zapata, "Shaped beam synthesis of real antenna arrays via finite-element method, floquet modal analysis, and convex programming," IEEE Trans. Antennas Propag., Vol. 64, No. 4, 1279-1286, Apr. 2016.
doi:10.1109/TAP.2016.2526038

10. Bucci, O. M., T. Isernia, and A. F. Morabito, "An effective deterministic procedure for the synthesis of shaped beams by means of uniformamplitude linear sparse arrays," IEEE Trans. Antennas Propag., Vol. 61, No. 1, 169-175, Jan. 2013.
doi:10.1109/TAP.2012.2219844

11. Pirhadi, A., M. H. Rahmani, and A. Mallahzadeh, "Shaped beam array synthesis using particle swarm optimisation method with mutual coupling compensation and wideband feeding network," IET Microw., Antennas Propag., Vol. 8, No. 8, 549-555, Jun. 2014.
doi:10.1049/iet-map.2013.0104

12. Abo El-Hassan, M., K. H. Awadalla, and K. F. Hussein, "Shaped-beam circularly polarized antenna array of linear elements for satellite and SAR applications," Wireless Pers. Commun., Vol. 110, 605-619, 2020.
doi:10.1007/s11277-019-06745-9

13. Yang, X., L. Chang, J. Zhang, D. Li, and M. Zhang, "A cosecant squared beam antenna array operating at 5.85–7.6GHz," 2019 Cross Strait Quad-Regional Radio Science and Wireless Technology Conference (CSQRWC), 1-3, Taiyuan, China, 2019.

14. Krishna Chaitanya, R., G. S. N. Raju, K. V. S. N. Raju, and P. Mallikarjuna Rao, "Antenna pattern synthesis using the quasi Newton method, firefly and particle swarm optimization techniques," IETE Journal of Research, 1-9, 2019.
doi:10.1080/03772063.2019.1643263

15. Ferreira, J. A. and F. Ares, "Pattern synthesis of conformal arrays by the simulated annealing technique," Electron. Lett., Vol. 33, No. 14, 1187-1189, Jul. 1997.
doi:10.1049/el:19970838

16. Ho, S. L. and S. Yang, "Multiobjective synthesis of antenna arrays using a vector tabu search algorithm," IEEE Antennas Wirel. Propag. Lett., Vol. 8, 947-950, Aug. 2009.
doi:10.1109/LAWP.2009.2029135

17. Akdagli, A. A., K. Guney, and D. Karaboga, "Touring ant colony optimization algorithm for shaped-beam pattern synthesis of linear antenna," Electromagnetics, Vol. 26, 615-628, 2006.
doi:10.1080/02726340600978349

18. Chatterjee, A., G. K. Mahanti, and P. R. S. Mahapatra, "Design of fully digital controlled reconfigurable dual-beam concentric ring array antenna using gravitational search algorithm," Progress In Electromagnetics Research C, Vol. 18, 59-72, 2011.
doi:10.2528/PIERC10101806

19. Larsson, E. G., O. Edfors, F. Tufvesson, and T. L. Marzetta, "Massive MIMO for next generation wireless systems," IEEE Commun. Mag., Vol. 52, No. 2, 186-195, Feb. 2014.
doi:10.1109/MCOM.2014.6736761

20. Vollbracht, D., "System specification for dual polarized low power X-band weather radars using phased array technology," Proc. Int. Radar Conf., 1-6, Lille, France, Oct. 2014.

21. Sallam, T. and A. M. Attiya, "Different array synthesis techniques for planar antenna array," Applied Computational Electromagnetics Society Journal, Vol. 34, No. 5, 716-723, 2019.

22. Bregman, J. D., "Concept design for a low-frequency array," Proc. SPIE, Vol. 4015, 19-33, Jul. 2000.

23. Haupt, R. and D. Werner, Genetic Algorithms in Electromagnetics, 1st edition, Wiley-IEEE Press, 2007.
doi:10.1002/047010628X

24. You, P., Y. Liu, K. D. Xu, C. Zhu, and Q. H. Liu, "Generalisation of genetic algorithm and fast Fourier transform for synthesising unequally spaced linear array shaped pattern including coupling effects," IET Microw., Antennas Propag., Vol. 11, No. 6, 827-832, May 2017.
doi:10.1049/iet-map.2016.0773

25. Derrac, J., S. Garcia, D. Molina, and F. Herrera, "A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms," Swarm EVol. Comput, Vol. 1, 3-18, 2011.
doi:10.1016/j.swevo.2011.02.002

26. Balanis, C. A., Antenna Theory: Analysis and Design, 4th edition, John Wiley & Sons, Inc, New York, 2016.

27. Holland, J. H., "Genetic algorithms," Scientific American, 66-72, Jul. 1992.

28. Goldberg, D. E., Genetic Algorithms in Search, Optimization, and Machine Learning, Addison- Wesley, Reading, MA, 1989.

29. Haupt, R. L. and S. E. Haupt, Practical Genetic Algorithms, 2nd edition, John Wiley & Sons, New York, 2004.

30. Boeringer, D. W. and D. H. Werner, "Particle swarm optimization versus genetic algorithms for phased array synthesis," IEEE Trans. Antennas Propag., Vol. 52, No. 3, 771-779, Mar. 2004.
doi:10.1109/TAP.2004.825102

31. Morabito, A. F., et al., "An effective approach to the synthesis of phase-only reconfigurable linear arrays," IEEE Trans. Antennas Propag., Vol. 60, No. 8, 3622-3631, 2012.
doi:10.1109/TAP.2012.2201099