Vol. 98
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-03
A Novel Circularly Polarized Fan-Beam Antenna for 5.8 GHz DSRC Applications
By
Progress In Electromagnetics Research M, Vol. 98, 55-65, 2020
Abstract
This paper presents a novel compact printed antenna exploitable for Dedicated Short-Range Communication at 5.8 GHz. The design of the proposed device is based on the concentric arrangement of two contemporary fed patches operating with different modes. The resulting antenna exhibits a fan-beam pattern, with a wide lobe in one plane and narrow lobe in the plane perpendicular to the former, while retaining exceptionally small dimensions. The actual width of the beam makes the antenna suitable to cover a single road lane, as prescribed by the Intelligent Transportation System framework requirements. Furthermore, it natively operates in Circular Polarization, as prescribed by the ETSI EN 302 663 normative. Experimental validations demonstrate that the proposed antenna presents a Left-Hand gain of 4.1 dB at center frequency, with HPBWx and HPBWy equal to 160˚ and 45˚, respectively, showing good agreement with the simulations. This measured performance confirms that the device is adequate to cover a single road-lane, according to the European framework for Dedicated Short-Range Communication for traffic monitoring.
Citation
Stefano Maddio, "A Novel Circularly Polarized Fan-Beam Antenna for 5.8 GHz DSRC Applications," Progress In Electromagnetics Research M, Vol. 98, 55-65, 2020.
doi:10.2528/PIERM20043007
References

1. ETSI "302 663 v1. 2.1 intelligent transport systems (its); access layer specification for intelligent transport systems operating in the 5GHz frequency band," ETSI Standard, 2013.

2. Chizhik, D., J. Ling, and R. A. Valenzuela, "The effect of electric field polarization on indoor propagation," ICUPC’98, IEEE 1998 International Conference on Universal Personal Communications, Conference Proceedings (Cat. No. 98TH8384), Vol. 1, 459-462, IEEE, 1998.
doi:10.1109/ICUPC.1998.733020

3. Zhong, Z. and X. Liao, "Circular polarization benefits in outdoor to indoor scenarios for MIMO cellular networks," 2014 Sixth International Conference on Wireless Communications and Signal Processing (WCSP), 1-5, IEEE, 2014.

4. Mohammadpour-Aghdam, K., R. Faraji-Dana, G. A. Vandenbosch, and W. De Raedt, "Fan and pencil beam aperture coupled patch antenna array with low side lobe level," Proceedings of the Fourth European Conference on Antennas and Propagation, 1-4, IEEE, 2010.

5. Maddio, S., A. Cidronali, M. Passafiume, G. Collodi, and S. Maurri, "Fine-grained azimuthal direction of arrival estimation using received signal strengths," Electronics Letters, Vol. 53, No. 10, 687-689, 2017.
doi:10.1049/el.2017.0456

6. Maddio, S., "A circularly polarized switched beam antenna with pattern diversity for WiFi applications," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 125-128, 2016.

7. Maddio, S., A. Cidronali, I. Magrini, and G. Manes, "A design method for single-feed wideband microstrip patch antenna for switchable circular polarization," 2007 European Microwave Conference, 262-265, IEEE, 2007.
doi:10.1109/EUMC.2007.4405176

8. James, J. R., P. S. Hall, et al. Handbook of Microstrip Antennas, Vol. 1, IET, 1989.

9. Maddio, S., "A compact wideband circularly polarized antenna array for C-band applications," Antennas and Wireless Propagation Letters, Vol. 14, 1081-1084, 2015.
doi:10.1109/LAWP.2015.2392387

10. Leonardi, O., M. G. Pavone, G. Sorbello, A. F. Morabito, and T. Isernia, "Compact single-layer circularly polarized antenna for short-range communication systems," Microwave and Optical Technology Letters, Vol. 56, No. 8, 1843-1846, 2014.
doi:10.1002/mop.28453

11. Maddio, S., "A compact circularly polarized antenna for 5.8-GHz intelligent transportation system," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 533-536, 2016.

12. Garg, R., P. Bhartia, I. J. Bahl, and A. Ittipiboon, Microstrip Antenna Design Handbook, Artech House, 2001.

13. Hua, C., N. Yang, X. Wu, and W. Wu, "Millimeter-wave fan-beam antenna based on step-index cylindrical homogeneous lens," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1512-1516, 2012.

14. Steyskal, H., "On antenna power pattern synthesis," IEEE Transactions on Antennas and Propagation, Vol. 18, No. 1, 123-124, 1970.
doi:10.1109/TAP.1970.1139622

15. Yurduseven, O. and D. Smith, "Symmetric/asymmetric H-plane horn fed offset parabolic reflector antenna with switchable pencil/fan-beam radiation characteristics," ISAPE2012, 82-85, IEEE, 2012.
doi:10.1109/ISAPE.2012.6408713

16. Naghshvarianjahromi, M., "Novel Ku band fan beam reflector back array antenna," Progress In Electromagnetics Research, Vol. 3, 95-103, 2008.
doi:10.2528/PIERL08021503

17. Konishi, Y., M. Ohtsuka, M. Matsunaga, and S. Urasaki, "Fan-beam forming for a linear antenna with exponential-tapered amplitude distribution," Electronics and Communications in Japan (Part I: Communications), Vol. 79, No. 10, 69-78, 1996.
doi:10.1002/ecja.4410791008

18. Inserra, D., W. Hu, and G. Wen, "Antenna array synthesis for RFID-based electronic toll collection," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 9, 4596-4605, 2018.
doi:10.1109/TAP.2018.2851292