Vol. 93
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-06-18
Contribution to the Experimental Characterization of the Electromagnetic Properties of HTS
By
Progress In Electromagnetics Research M, Vol. 93, 137-144, 2020
Abstract
This work is a contribution to the characterization of the electromagnetic properties of high temperature superconductors (HTS) made of Bismuth Strontium Calcium Copper Oxides (BSCCO). The electromagnetic proprieties (critical current density and self-field AC losses) of a tape and a coil are determined experimentally at different frequencies, and compared to analytical models and finite element simulations for a better analysis of the physical phenomena. As shown in this work, the transition from the element to the system is not straightforward, and the characterization of such a material at the system scale is necessary due to their high sensitivity to the magnetic field. Solutions to some measurement problems are also highlighted.
Citation
Yazid Statra Hocine Menana Bruno Douine , "Contribution to the Experimental Characterization of the Electromagnetic Properties of HTS," Progress In Electromagnetics Research M, Vol. 93, 137-144, 2020.
doi:10.2528/PIERM20050705
http://www.jpier.org/PIERM/pier.php?paper=20050705
References

1. Tixador, P., Les Supraconducteurs, Hermès Science, 1995.

2. Bendali, S., "Dimensionnement d’un moteur supraconducteur HTc,", Ph.D. thesis, Lorraine University, 2012.

3. Gianni, L., et al., "Transport ac losses in YBCO coated conductors," IEEE Trans. Appl. Superconduct., Vol. 16, No. 2, 147-149, Jun. 2006.
doi:10.1109/TASC.2006.870819

4. Campbell, A. M., "A general treatment of losses in multifilamentary superconductors," Cryogenics, Vol. 22, 3-16, 1982.
doi:10.1016/0011-2275(82)90015-7

5. Norris, W. T., "Calculation of hysteresis losses in hard superconductors carrying as: Isolated conductors and edges of thin sheets," Journal of Physics D, Vol. 3, 489-507, 1970.
doi:10.1088/0022-3727/3/4/308

6. Douine, B., J. Lévêque, and A. Rezzoug, "AC losses measurements of a high critical superconductor transporting sinusoidal or non sinusoidal current ," IEEE Trans. Appl. Superconduct., Vol. 10, No. 1, 1489-1492, Mar. 2000.
doi:10.1109/77.828523

7. SUMITOMO, , http://www.sei.co.jp/super/hts/.

8. Kim, Y. B., C. F. Hempstead, and A. R. Strnad, "Critical persistent currents in hard superconductors," Physical Review Letters, Vol. 9, No. 7, 306-309, Oct. 1962.
doi:10.1103/PhysRevLett.9.306

9. Grilli, F., F. Sirois, V. Zermeño, and M. Vojenciak, "Self-consistent modeling of the Icof HTS devices: How accurate do models really need to be?," IEEE Trans. Appl. Superconduct., Vol. 24, No. 6, 1-8, 2014.
doi:10.1109/TASC.2014.2326925

10. Willis, J. O., J. Y. Coulter, and M. W. Rupich, "n-value analysis of position-dependent property variability in long-length coated conductors," IEEE Trans. Appl. Superconduct., Vol. 21, No. 3, 2988-2991, 2011.
doi:10.1109/TASC.2010.2087372

11. Thakur, K. P., A. Raj, E. H. Brandt, J. Kvitkovic, and S. V. Pamidi, "Frequency-dependent critical current and transport ac loss of superconductor strip and Roebel cable," Supercond. Sci. Technol., Vol. 24, No. 6, 2011.
doi:10.1088/0953-2048/24/6/065024

12. Brambilla, R., F. Grilli, and L. Martini, "Development of an edge element model for Ac loss computation in high temperature superconductors," Supercond. Sci. Technol., Vol. 20, 16-24, 2007.
doi:10.1088/0953-2048/20/1/004

13. Douine, B., et al., "Self field effect compensation in an HTS tube," IEEE Trans. Appl. Superconduct., Vol. 18, No. 3, 1698-1703, 2008.
doi:10.1109/TASC.2008.2000903