Vol. 95

Front:[PDF file] Back:[PDF file]
Latest Volume
All Volumes
All Issues
2020-08-17

Flexible Metamaterial Electromagnetic Harvester Using Modified Split-Ring Resonator

By Mohammed M. Bait-Suwailam, Thamer S. Almoneef, and Saud M. Saeed
Progress In Electromagnetics Research M, Vol. 95, 135-144, 2020
doi:10.2528/PIERM20051407

Abstract

In this paper, a flexible metamaterial-based electromagnetic harvester is proposed for wearable applications at microwave regime. The proposed harvesting structure is composed of a modifi ed confi guration from the conventional Split-Ring Resonator (SRR) inclusion and is printed on a grounded very thin flexible substrate. The proposed wearable harvester structure provides several interesting features, including its robustness, sustainability and ease of integration with flexible electronics and sensors. Numerical full-wave studies are conducted, where results from a periodic arrangement of the proposed harvesting unit cell along with several two-dimensional arrays of harvesters are presented and discussed. Based on the numerical studies, the proposed electromagnetic harvesting structure exhibits good efficiency capability of power conversion from radio frequency received power to alternating-current harvested power across collecting loads above 90% for the three studied cases.

Citation


Mohammed M. Bait-Suwailam, Thamer S. Almoneef, and Saud M. Saeed, "Flexible Metamaterial Electromagnetic Harvester Using Modified Split-Ring Resonator," Progress In Electromagnetics Research M, Vol. 95, 135-144, 2020.
doi:10.2528/PIERM20051407
http://www.jpier.org/PIERM/pier.php?paper=20051407

References


    1. Jiang, S. and S. V. Georgakopoulos, "Optimum wireless powering of sensors embedded in concrete," IEEE Transactions on Antennas and Propagation, Vol. 60, No. 2, 1106-1113, 2011.
    doi:10.1109/TAP.2011.2173147

    2. Shams, K. M. and M. Ali, "Wireless power transmission to a buried sensor in concrete," IEEE Sensors Journal, Vol. 7, No. 12, 1573-1577, 2007.
    doi:10.1109/JSEN.2007.908230

    3. Assimonis, S. D., V. Fusco, A. Georgiadis, and T. Samaras, "Efficient and sensitive electrically small rectenna for ultra-low power RF energy harvesting," Scientific Reports, Vol. 8, No. 1, 1-13, 2018.
    doi:10.1038/s41598-018-33388-w

    4. Shen, S., C.-Y. Chiu, and R. D. Murch, "Multiport pixel rectenna for ambient RF energy harvesting," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 2, 644-656, 2017.
    doi:10.1109/TAP.2017.2786320

    5. Andersson, M. A., A. Ozcelikkale, M. Johansson, U. Engstrom, A. Vorobiev, and J. Stake, "Feasibility of ambient RF energy harvesting for self-sustainable M2M communications using transparent and flexible graphene antennas," IEEE Access, Vol. 4, 5850-5857, 2016.
    doi:10.1109/ACCESS.2016.2604078

    6. Pinuela, M., P. D. Mitcheson, and S. Lucyszyn, "Ambient RF energy harvesting in urban and semi-urban environments," IEEE Transactions on Microwave Theory and Techniques, Vol. 61, No. 7, 2715-2726, 2013.
    doi:10.1109/TMTT.2013.2262687

    7. Apostolos, J. T., J. D. Logan, and W. Mouyos, Low frequency rectenna system for wireless charging, US Patent App. 16/569,814, January 2, 2020.

    8. Takeno, K., "Wireless power transmission technology for mobile devices," IEICE Electronics Express, Vol. 10, No. 21, 20132010-20132010, 2013.
    doi:10.1587/elex.10.20132010

    9. Shinohara, N., "Rectennas for microwave power transmission," IEICE Electronics Express, Vol. 10, No. 21, 20132009-20132009, 2013.
    doi:10.1587/elex.10.20132009

    10. Ashoor, A. Z., T. S. Almoneef, and O. M. Ramahi, "A planar dipole array surface for electromagnetic energy harvesting and wireless power transfer," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 3, 1553-1560, 2017.
    doi:10.1109/TMTT.2017.2750163

    11. Suh, Y.-H. and K. Chang, "A high-efficiency dual-frequency rectenna for 2.45- and 5.8-GHz wireless power transmission," IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 7, 1784-1789, 2002.
    doi:10.1109/TMTT.2002.800430

    12. Glaser, P. E., "Power from the sun: Its future," Science, Vol. 162, No. 3856, 857-861, 1968.
    doi:10.1126/science.162.3856.857

    13. Erb, R., "Power from space — The tough questions: The 1995 Peter E. Glaser lecture," Acta Astronautica, Vol. 38, No. 4–8, 539-550, 1996.
    doi:10.1016/0094-5765(96)82324-1

    14. Shafique, K., B. A. Khawaja, M. D. Khurram, S. M. Sibtain, Y. Siddiqui, M. Mustaqim, H. T. Chattha, and X. Yang, "Energy harvesting using a low-cost rectenna for Internet of Things (IoT) applications," IEEE Access, Vol. 6, 30932-30941, 2018.
    doi:10.1109/ACCESS.2018.2834392

    15. Lin, W. and R. W. Ziolkowski, "A circularly polarized wireless power transfer system for internetof- things (IoT) applications," 2020 4th Australian Microwave Symposium (AMS) IEEE, 1-2, 2020.

    16. Singh, N., S. Kumar, and B. K. Kanaujia, "A new trend to power up next-generation Internet of Things (IoT) devices: ‘rectenna’," Energy Conservation for IoT Devices, 331-356, Springer, 2019.
    doi:10.1007/978-981-13-7399-2_14

    17. Eid, A., J. G. Hester, J. Costantine, Y. Tawk, A. H. Ramadan, and M. M. Tentzeris, "A compact source-load agnostic flexible rectenna topology for IoT devices," IEEE Transactions on Antennas and Propagation, Vol. 68, No. 4, 2621-2629, 2019.
    doi:10.1109/TAP.2019.2955211

    18. Michisaka, T., et al., "Novel sensing techniques of chipless RFID sensor for infrastructure," IEICE Communications Express, 2020.

    19. Yang, S., M. Crisp, R. V. Penty, and I. H. White, "RFID enabled health monitoring system for aircraft landing gear," IEEE Journal of Radio Frequency Identification, Vol. 2, No. 3, 159-169, 2018.
    doi:10.1109/JRFID.2018.2822770

    20. Jauregi, I., H. Solar, A. Beriain, I. Zalbide, A. Jimenez, I. Galarraga, and R. Berenguer, "UHF RFID temperature sensor assisted with body-heat dissipation energy harvesting," IEEE Sensors Journal, Vol. 17, No. 5, 1471-1478, 2016.
    doi:10.1109/JSEN.2016.2638473

    21. Sun, H., Y.-X. Guo, M. He, and Z. Zhong, "A dual-band rectenna using broadband Yagi antenna array for ambient RF power harvesting," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 918-921, 2013.
    doi:10.1109/LAWP.2013.2272873

    22. Almoneef, T. S., F. Erkmen, and O. M. Ramahi, "Harvesting the energy of multi-polarized electromagnetic waves," Scientific Reports, Vol. 7, No. 1, 1-14, 2017.
    doi:10.1038/s41598-017-15298-5

    23. Lu, P., C. Song, and K. M. Huang, "A compact rectenna design with wide input power range for wireless power transfer," IEEE Transactions on Power Electronics, Vol. 35, No. 7, 6705-6710, 2020.
    doi:10.1109/TPEL.2019.2963422

    24. Lu, P., C. Song, F. Cheng, B. Zhang, and K. M. Huang, "A self-biased adaptive reconfigurable rectenna for microwave power transmission," IEEE Transactions on Power Electronics, 2020.
    doi:10.1109/TPEL.2019.2963422

    25. Sun, H., H. He, and J. Huang, "Polarization-insensitive rectenna arrays with different power combining strategies," IEEE Antennas and Wireless Propagation Letters, Vol. 19, No. 3, 492-496, 2020.
    doi:10.1109/LAWP.2020.2968616

    26. Vital, D., S. Bhardwaj, and J. L. Volakis, "Textile based large area RF-power harvesting system for wearable applications," IEEE Transactions on Antennas and Propagation, 2019.

    27. Monti, G., L. Corchia, and L. Tarricone, "UHF wearable rectenna on textile materials," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 7, 3869-3873, 2013.
    doi:10.1109/TAP.2013.2254693

    28. Palazzi, V., J. Hester, J. Bito, F. Alimenti, C. Kalialakis, A. Collado, P. Mezzanotte, A. Georgiadis, L. Roselli, and M. M. Ten, "A novel ultra-lightweight multiband rectenna on paper for RF energy harvesting in the next generation LTE bands," IEEE Transactions on Microwave Theory and Techniques, Vol. 66, No. 1, 366-379, 2017.
    doi:10.1109/TMTT.2017.2721399

    29. Lin, C.-H., C.-W. Chiu, and J.-Y. Gong, "A wearable rectenna to harvest low-power RF energy for wireless healthcare applications," 2018 11th International Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI) IEEE, 1-5, 2018.

    30. Asif, S. M., A. Iftikhar, J. W. Hansen, M. S. Khan, D. L. Ewert, and B. D. Braaten, "A novel RF-powered wireless pacing via a rectenna-based pacemaker and a wearable transmit-antenna array," IEEE Access, Vol. 7, 1139-1148, 2018.

    31. Ahmed, M. I., et al., "SAR calculations of novel wearable fractal antenna on metamaterial cell for search and rescue applications," Progress In Electromagnetics Research, Vol. 53, 99-110, 2017.
    doi:10.2528/PIERM16110706

    32. Il Kwak, S., D.-U. Sim, J. H. Kwon, and Y. J. Yoon, "Design of PIFA with metamaterials for body- SAR reduction in wearable applications," IEEE Transactions on Electromagnetic Compatibility, Vol. 59, No. 1, 297-300, 2016.
    doi:10.1109/TEMC.2016.2593493