Vol. 95
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-08-17
Ionic Liquid-Gr Attached PVDF Composite Film for Shielding of Microwave Radiations
By
Progress In Electromagnetics Research M, Vol. 95, 145-153, 2020
Abstract
To diminish electromagnetic interference (EMI) for microwave radiations, effects of graphite (Gr) modified by a long alkyl chain ionic liquid (IL) 1-Butyl-3-methylimidazolium hydrogen sulphate ([BMIM][HSO4]) on poly(vinylidene fluoride) (PVDF), was investigated. The pre-localized Gr coated polymer powders were fabricated, using solvent blending method, with different concentrations of Gr over PVDF matrix to prepare a series of PVDF/Gr/IL composites. The surface morphology of the fabricated composite films was examined by scanning electron microscopy (SEM). The composites, with a thickness of ~0.15 mm, exhibit good EMI shielding properties, besides low cost production and flexibility. The enhanced properties are due to high ionic conductivity of the IL and formation of a connecting network by Gr facilitating electron conduction. Absorption is the key factor due to which the total shielding effectiveness in the frequency band of 12 to 18 GHz has been improved significantly.
Citation
Vikas Rathi, Varij Panwar, and Divya Kuriyal, "Ionic Liquid-Gr Attached PVDF Composite Film for Shielding of Microwave Radiations," Progress In Electromagnetics Research M, Vol. 95, 145-153, 2020.
doi:10.2528/PIERM20052104
References

1. Kong, L. B., Z. W. Li, L. Liu, R. Huang, M. Abshinova, Z. H. Yang, C. B. Tang, P. K. Tan, C. R. Deng, and S. Matitsine, "Recent progress in some composite materials and structures for specific electromagnetic applications," International Materials Review, Vol. 58, No. 4, 203-259, 2013.
doi:10.1179/1743280412Y.0000000011

2. Geetha, S., K. K. Satheesh Kumar, C. R. K. Rao, M. Vijayan, and D. C. Trivedi, "EMI shielding: Methods and materials — A review," Journal of Applied Polymer Science, Vol. 112, No. 4, 2073-2086, May 2009.
doi:10.1002/app.29812

3. Morgan, D., Handbook of EMC Testing and Measurement, Vol. 8, Institution of Electrical Engineers (IEE), London, 1995.

4. Kheifets, L., A. A. Afifi, and R. Shimkhada, "Public health impact of extremely low frequency electromagnetic fields," Environ. Health Persp., Vol. 114, No. 10, 1532-1607, Oct. 2006.
doi:10.1289/ehp.8977

5. Rathi, V., V. Panwar, G. Anoop, M. Chaturvedi, K. Sharma, and B. Prasad, "Flexible, thin composite film to enhance the electromagnetic compatibility of biomedical electronic devices," IEEE Transactions on Electromagnetic Compatibility, Vol. 61, No. 4, 1033-1041, Nov. 2018.
doi:10.1109/TEMC.2018.2881267

6. Song, W. L., X. T. Guan, L. Z. Fan, W. Q. Cao, C. Y. Wang, and M. S. Cao, "Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding," Carbon, Vol. 93, 151-160, Nov. 2015.

7. Kuang, T., L. Chang, F. Chen, Y. Sheng, D. Fu, and X. Peng, "Facile preparation of lightweight high-strength biodegradable polymer/multi-walled carbon nanotubes nanocomposite foams for electromagnetic interference shielding," Carbon, Vol. 105, 305-313, Aug. 2016.
doi:10.1016/j.carbon.2016.04.052

8. Kocifaj, M., J. Klacka, F. Kundracik, and G. Videen, "Charge-induced electromagnetic resonances in nanoparticles," Annalen der Physik, Vol. 527, No. 11–12, 765-769, Dec. 2015.
doi:10.1002/andp.201500202

9. Sampath, U., Y. Ching, C. Chuah, J. Sabariah, and P. C. Lin, "Fabrication of porous materials from natural/synthetic biopolymers and their composites," Materials, Vol. 9, No. 12, 991, Dec. 2016.
doi:10.3390/ma9120991

10. Gonzalez, M., M. Crespo, J. Baselga, and J. Pozuelo, "Carbon nanotube scaffolds with controlled porosity as electromagnetic absorbing materials in the gigahertz range," Nanoscale, Vol. 8, No. 20, 10724-10730, 2016.
doi:10.1039/C6NR02133F

11. Shen, B., Y. Li, W. Zhai, and W. Zheng, "Compressible graphene-coated polymer foams with ultralow density for adjustable electromagnetic interference (EMI) shielding," ACS Applied Materials and Interfaces, Vol. 8, No. 12, 8050-8057, Mar. 2016.
doi:10.1021/acsami.5b11715

12. Gargama, H., A. K. Thakur, and S. K. Chaturvedi, "Polyvinylidene fluoride/nanocrystalline iron composite materials for EMI shielding and absorption applications," Journal of Alloys and Compounds, Vol. 654, 209-215, Jan. 2016.
doi:10.1016/j.jallcom.2015.09.059

13. Plaquevent, J. C., J. Levillain, F. Guillen, C. Malhiac, and A. C. Gaumon, "Ionic liquids: New targets and media for α-amino acid and peptide chemistry," Chemical Reviews, Vol. 108, No. 12, 5035-5060, Dec. 2008.
doi:10.1021/cr068218c

14. Lins, L. C., S. Livi, M. Marechal, J. Duchet-Rumeau, and J. F. Gerard, "Structural dependence of cations and anions to building the polar phase of PVDF," European Polymer Journal, Vol. 107, 236-248, Oct. 2018.

15. Panwar, V., B. Kang, J. O. Park, S. Park, and R. M. Mehra, "Study of dielectric properties of styreneacrylonitrile graphite sheets composites in low and high frequency region," European Polymer Journal, Vol. 45, No. 6, 1777-1784, Jun. 2009.
doi:10.1016/j.eurpolymj.2009.02.020

16. Nanni, F., P. Travaglia, and M. Valentini, "Effect of carbon nanofibres dispersion on the microwave absorbing properties of CNF/epoxy composites," Composites Science and Technology, Vol. 69, No. 3–4, 485-490, 2009.
doi:10.1016/j.compscitech.2008.11.026

17. Bera, R., S. Paria, S. K. Karan, A. K. Das, A. Maitra, and B. B. Khatua, "NaCl leached sustainable porous flexible Fe3O4 decorated RGO-polyaniline/PVDF composite for durable application against electromagnetic pollution," eXPRESS Polymer Letters, Vol. 11, No. 5, 419-433, May 2017.
doi:10.3144/expresspolymlett.2017.40

18. Rathi, V., V. Panwar, and B. Prasad, "Characterization of PVDF-Gr composite films for electromagnetic interference shielding application," Progress In Electromagnetics Research Letters, Vol. 88, 105-112, 2020.
doi:10.2528/PIERL19090202