Vol. 98
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-10-29
A New Passive Coding Imaging Method in Synthetic Aperture Interferometric Radiometer
By
Progress In Electromagnetics Research M, Vol. 98, 35-44, 2020
Abstract
Synthetic aperture interferometric radiometer (SAIR) is a high-resolution passive imager by sparsely arranging a number of small aperture antennas to synthesize a large aperture. However, the SAIR requires as many receivers as antennas needed, which results in high system complexity and hardware cost and limits the application of the SAIR. Aiming to reduce the system complexity of SAIR, a new passive coding imaging method is proposed in this paper. By using a new aperture coded measurement approach, the proposed method can significantly reduce the number of RF chains while keeping the image fidelity. The effectiveness of the proposed imaging method has been varified by simulations. The results reveal that the proposed method can be an efficient alternative for simplifying the architectures of SAIR.
Citation
Jinguo Wang Zhaozhao Gao Jie Gu Xiaoyun Zhang Shiwen Li Zitong Dong Zilong Zhao Fan Jiang Bo Qi Wei Zhao , "A New Passive Coding Imaging Method in Synthetic Aperture Interferometric Radiometer," Progress In Electromagnetics Research M, Vol. 98, 35-44, 2020.
doi:10.2528/PIERM20061807
http://www.jpier.org/PIERM/pier.php?paper=20061807
References

1. Corbella, I., F. Torres, A. Camps, A. Colliander, M. Mart´ın-Neira, S. Rib´o, K. Rautiainen, N. Duffo, and M. Vall-llossera, "MIRAS end-to-end calibration: Application to SMOS L1 processor," IEEE Trans. Geoscience and Remote Sensing, Vol. 43, No. 5, 1126-1134, 2005.
doi:10.1109/TGRS.2004.840458

2. Su, K., W. Z. Liu, B. R. Barat, D. E. Gary, H. Z. Michalopoulou, and J. F. Federici, "Two dimensional interferometric and synthetic aperture imaging with a hybrid terahertz/millimeter wave system," Applied Optics, Vol. 49, No. 19, 13-19, Jul. 2010.
doi:10.1364/AO.49.000E13

3. Zhang, C., J. Wu, H. Liu, and Y. Yan, "Imaging algorithm for synthetic aperture interferometric radiometer in near field," Science China Technological Sciences, Vol. 54, No. 8, 2224-2231, 2011.
doi:10.1007/s11431-011-4403-3

4. Wu, J., C. Zhang, H. Liu, and J. Yan, "Performance analysis of circular antenna array for microwave interferometric radiometers," IEEE Trans. Geoscience and Remote Sensing, Vol. 55, No. 6, 3261-3271, 2017.
doi:10.1109/TGRS.2017.2667042

5. Chen, J., Y. Li, J. Wang, Y. Li, and Y. Zhang, "An accurate imaging algorithm for millimeter wave synthetic aperture imaging radiometer in near field," Progress In Electromagnetics Research, Vol. 141, 517-535, 2013.
doi:10.2528/PIER13060702

6. Zhang, Y., Y. Li, S. Zhu, and Y. Li, "A robust reweighted L1-minimization imaging algorithm for passive millimeter wave SAIR in near field," Sensors, Vol. 15, No. 10, 24945-24960, Sept. 2015.
doi:10.3390/s151024945

7. Zhang, C., H. Liu, L. Niu, and J. Wu, "System design and preliminary tests of an L-band clock scan microwave interferometric radiometer," 2017 International Geoscience and Remote Sensing Symposium, 715-718, 2017.
doi:10.1109/IGARSS.2017.8127052

8. Zhang, C., H. Liu, L. Niu, and J. Wu, "CSMIR: An L-band clock scan microwave interferometric radiometer," IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 1-9, 2018.
doi:10.1109/JSTARS.2018.2837222

9. Li, S., X. Zhou, B. Ren, H.-J. Sun, and X. Lv, "A compressive sensing approach for synthetic aperture imaging radiometers," Progress In Electromagnetics Research, Vol. 135, 583-599, 2013.
doi:10.2528/PIER12110603

10. Wang, J., Z. Gao, J. Gu, S. Li, X. Zhang, Z. Dong, Z. Zhao, F. Jiang, B. Qi, and P. Xian, "A new passive imaging technique based on compressed sensing for synthetic aperture interferometric radiometer," IEEE Geoscience and Remote Sensing Letters, doi: 10.1109/LGRS.2019.2958033.

11. Kpre, E. L. and C. Decroze, "Passive coding technique applied to synthetic aperture interferometric radiometer," IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 8, 1193-1197, 2017.
doi:10.1109/LGRS.2017.2700953

12. Kpre, E. L. and C. Decroze, "Synthetic Aperture Interferometric Imaging using a passive microwave coding device," 2016 IEEE Conference on Antenna Measurements Applications (CAMA), 1-4, Oct. 23–27, 2016.

13. Kpre, E. L. and C. Decroze, "Passively coded synthetic aperture interferometric radiometer (CSAIR): Theory and measurement results," European Conference on Antennas and Propagation, 1243-1246, Mar. 23–27, 2017.

14. Hill, D. A., "Electromagnetic theory of reverberation chambers," NIST Technical Note, 1506, Dec. 1998.

15. Candes, E. J. and M. Wakin, "An introduction to compressive sampling," IEEE Signal Processing Magazine, Vol. 25, No. 2, 21-30, Mar. 2008.
doi:10.1109/MSP.2007.914731

16. Figueiredo, A. T., R. D. Nowak, and S. J. Wright, "Gradient projection for sparse reconstruction: Application to compressed sensing and other inverse problems," IEEE Journal of Selected Topics in Signal Processing, Vol. 1, No. 4, 586-597, 2007.
doi:10.1109/JSTSP.2007.910281

17. Hu, F., X. Peng, F. He, L. Wu, J. Li, Y. Chen, and D. Zhu, "RFI mitigation in aperture synthesis radiometers using a modified clean algorithm," IEEE Geoscience and Remote Sensing Letters, Vol. 14, No. 1, 13-17, 2017.
doi:10.1109/LGRS.2016.2622760