Vol. 96
Latest Volume
All Volumes
PIERM 126 [2024] PIERM 125 [2024] PIERM 124 [2024] PIERM 123 [2024] PIERM 122 [2023] PIERM 121 [2023] PIERM 120 [2023] PIERM 119 [2023] PIERM 118 [2023] PIERM 117 [2023] PIERM 116 [2023] PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-24
Detection of Depth of the Tumor in Microwave Imaging Using Ground Penetrating Radar Algorithm
By
Progress In Electromagnetics Research M, Vol. 96, 191-202, 2020
Abstract
Microwave Imaging (MI) is a new technique for detecting breast cancer using electrical property difference between the non-malignant and malignant tissues present in the breast. Numerous studies show that detecting the depth of the tumor is the essential measure in determining additional management. Developing evidence in many of the literature surveys illustrate that detecting tumor depth is a precise parameter for identifying the affected area. Thus, Ground Penetrating Radar (GPR) algorithm is applied successfully to detect the exact depth of the malignant tissue. Generally, GPR is originally conceived for archaeological investigations, building condition assessment, detection of buried mines, etc. But here an effort has been made to apply GPR to Radar-based breast cancer detection. The simulated bandwidth of the proposed UWB antenna starts at 2.4GHz and ends at 4.7 GHz. The electromagnetic wave reflected due to dielectric property variation is used by GPR algorithm to identify the depth of the tumor. Before applying a depth migration technique, preprocessing steps like Cartesian form transformation, Hermitian Signal Processing, and Inverse Fast Fourier Transform (IFFT) have to be followed in the backscattered signal to convert positive frequency data into time-domain data. Depth details can be noticed in the migrated image, after applying the migration procedure. Results show that GPR algorithm can be effectively used for detecting the tumor embedded in the depth of the breast tissue. To understand the effectiveness of this imaging scheme, an experimental analysis is done using a combination of wheat flour and water-petroleum jelly. The measured impedance bandwidth of the UWB antenna ranges from 2.8 GHz to 4.48 GHz. The observation is done for a known spherical tumor of diameter 13mm which is placed at different depths from the skin layer. While applying the algorithm in the received backscattered signal, we were able to detect correctly the tumor at a depth of 45mm embedded in the breast tissue. The experimental results are compared with simulation ones to validate the aptness of a microwave imaging approach for detecting the depth of the tumor.
Citation
Vanaja Bensingh, John Bosco Joselin Jeya Sheela, Rahul Krishnan, Lalitha Kandasamy, and Sasirekha Devarajulu, "Detection of Depth of the Tumor in Microwave Imaging Using Ground Penetrating Radar Algorithm," Progress In Electromagnetics Research M, Vol. 96, 191-202, 2020.
doi:10.2528/PIERM20062201
References

1. Mendat, C. C., D. Mislan, and L. Hession-Kunz, "Patient comfort from the technologist perspective: Factors to consider in mammographic imaging," International Journal of Women's Health, Vol. 9, 359, 2017.
doi:10.2147/IJWH.S129817

2. Chan, H. H., G. Lo, and P. S. Cheung, "Is pain from mammography reduced by the use of a radiolucent MammoPad? Local experience in Hong Kong," Hong Kong Med. J., Vol. 22, No. 3, 210-215, 2016.
doi:10.12809/hkjr1916939

3. Kosus, N., A. Kosus, M. Duran, S. Simavlı, and N. Turhan, "Comparison of standard mammography with digital mammography and digital infrared thermal imaging for breast cancer screening," Journal of the Turkish German Gynecological Association, Vol. 11, No. 3, 152, 2010.
doi:10.5152/jtgga.2010.24

4. Heywang-Kobrunner, S. H., A. Hacker, and S. Sedlacek, "Advantages and disadvantages of mammography screening," Breast Care, Vol. 6, No. 3, 199-207, 2011.
doi:10.1159/000329005

5. Fernandez, M. G., Y. A. Lopez, A. A. Arboleya, B. G. Valdes, Y. R. Vaqueiro, F. L. H. Andres, and A. P. Garcıa, "Synthetic aperture radar imaging system for landmine detection using a ground penetrating radar on board a unmanned aerial vehicle," IEEE Access, Vol. 6, 45100-45112, 2018.
doi:10.1109/ACCESS.2018.2863572

6. Selvaraj, V. and P. Srinivasan, "Interaction of an EM wave with the breast tissue in a microwave imaging technique using an ultra-wideband antenna," Biomedical Research, Vol. 28, No. 3, 1025-1030, 2017.

7. Kuwahara, Y. and A. M. Malik, "Microwave imaging for early breast cancer detection," New Perspect. Breast Imaging, 45-71, IntechOpen, 2017.

8. Zhang, H., S. Y. Tan, and H. S. Tan, "A novel method for microwave breast cancer detection," 2008 Asia-Pacific Microwave Conference, 1-4, IEEE, 2008.

9. Chen, Y., E. Gunawan, Y. Kim, K. Low, and C. Soh, "UWB microwave imaging for breast cancer detection: Tumor/clutter identification using a time of arrival data fusion method," 2006 IEEE Antennas and Propagation Society International Symposium, 255-258, IEEE, 2006.
doi:10.1109/APS.2006.1710504

10. Chen, Y., E. Gunawan, K. S. Low, S. C. Wang, C. B. Soh, and L. L. Thi, "Time of arrival data fusion method for two-dimensional ultrawideband breast cancer detection," IEEE Transactions on Antennas and Propagation, Vol. 55, No. 10, 2852-2865, 2007.
doi:10.1109/TAP.2007.905868

11. Unal, I, B. Turetken, and Y. Cotur, "Microwave imaging of breast cancer tumor inside voxel-based breast phantom using conformal antennas," 2014 XXXIth URSI General Assembly and Scientific Symposium (URSI GASS), 1-4, IEEE, 2014.

12. Computer Simulation Technology (CST) microwave studio software, , , version 2010.

13. Tiang, S. S., M. S. Hathal, T. F. Zanoon, M. F. Ain, and M. Z. Abdullah, "Radar sensing featuring biconical antenna and enhanced delay and sum algorithm for early stage breast cancer detection," Progress In Electromagnetics Research B, Vol. 46, 299-316, 2013.
doi:10.2528/PIERB12102201

14. Borja, B., J. A. Tirado-Mendez, and H. Jardon-Aguilar, "An overview of UWB antennas for microwave imaging systems for cancer detection purposes," Progress In Electromagnetics Research B, Vol. 80, 173-198, 2018.
doi:10.2528/PIERB18030302

15. Amdaouch, I., O. Aghzout, A. Naghar, A. V. Alejos, and F. J. Falcone, "Breast tumor detection system based on a compact UWB antenna design," Progress In Electromagnetics Research M, Vol. 64, 123-133, 2018.
doi:10.2528/PIERM17102404

16. Adnan, S., R. Abd-Alhameed, C. H. See, H. I. Hraga, I. T. Elfergani, and D. Zhou, "A compact UWB antenna design for breast cancer detection," PIERS Online, Vol. 6, No. 2, 129-132, 2010.
doi:10.2529/PIERS091029055334

17. AlShehri, S. A., S. Khatun, A. B. Jantan, R. S. A. Raja Abdullah, R. Mahmud, and Z. Awang, "Experimental breast tumor detection using NN-based UWB imaging," Progress In Electromagnetics Research, Vol. 111, 447-465, 2011.
doi:10.2528/PIER10110102