Vol. 96
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-09-12
A Highly Bendable Log-Periodic Array Antenna for Flexible Electronics
By
Progress In Electromagnetics Research M, Vol. 96, 99-107, 2020
Abstract
An eleven element log-periodic dipole-array (LPDA) antenna, occupying a surface area of only 90 x 52 mm2, printed on an ultra-thin flexible Kapton substrate of thickness 0.035 mm , is proposed. The antenna operates with a stricter 10 dB reflection coefficient bound in the frequency bands 2.75-3.53 GHz and 4-6.2 GHz. For a less stringent bound of 6 dB (which is acceptable for wearable applications), it operates in the wider range of 2.7-6.8 GHz. The antenna has an end-fire radiation pattern with a maximum measured gain of 6 dBi. The flexibility of the antenna is illustrated by reflection and radiation pattern measurements for three different radii, i.e., 50, 30, and 10 mm in both the convex and concave configurations. It is experimentally demonstrated that LPDA exhibits stable input-impedance characteristics and consistent radiation properties over the whole operating band under all bending conditions. The low cost, light weight, and flexible design, as well as the broadband performance in both concave and convex bent configurations, prove the suitability of the antenna for the contemporary flexible electronic devices.
Citation
Hattan Abutarboush Omar F. Siddiqui Muhammad Rizwan Wali Farooq Ahmad Tahir , "A Highly Bendable Log-Periodic Array Antenna for Flexible Electronics," Progress In Electromagnetics Research M, Vol. 96, 99-107, 2020.
doi:10.2528/PIERM20071402
http://www.jpier.org/PIERM/pier.php?paper=20071402
References

1. Abutarboush, H. F., M. F. Farooqui, and A. Shamim, "Inkjet-printed wideband antenna on resin-coated paper substrate for curved wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 20-23, 2015.

2. Ahmed, S., F. A. Tahir, A. Shamim, and H. M. Cheema, "A compact Kapton-based inkjet-printed multiband antenna for exible wireless devices," IEEE Antennas and Wireless Propagation Letters, Vol. 14, 1802-1805, 2015.
doi:10.1109/LAWP.2015.2424681

3. Li, W. T., Y. Q. Hei, P. M. Grubb, X.-W. Shi, and R. T. Chen, "Inkjet printing of wideband stacked microstrip patch array antenna on ultrathin flexible substrates," IEEE Transactions on Components, Packaging and Manufacturing Technology, Vol. 8, No. 9, 1695-1701, 2018.
doi:10.1109/TCPMT.2018.2848459

4. Tehrani, B. K., B. S. Cook, and M. M. Tentzeris, "Inkjet printing of multilayer millimeter-wave Yagi-Uda antennas on exible substrates," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 143-146, 2015.

5. Tang, M.-C., T. Shi, and R. W. Ziolkowski, "Flexible efficient quasi-yagi printed uniplanar antenna," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 12, 5343-5350, 2015.
doi:10.1109/TAP.2015.2486807

6. Casula, G. A., P. Maxia, G. Mazzarella, and G. Montisci, "Design of a printed log-periodic dipole array for ultra-wideband applications," Progress In Electromagnetics Research C, Vol. 38, 15-26, 2013.
doi:10.2528/PIERC13012704

7. Hamza, S. M., F. A. Tahir, and H. M. Cheema, "A high-gain inkjet-printed UWB LPDA antenna on paper substrate," International Journal of Microwave and Wireless Technologies, Vol. 9, No. 4, 931-937, 2017.
doi:10.1017/S1759078716000829

8. Bozdag, G. and A. Kustepeli, "Subsectional tapered fed printed LPDA antenna with a feeding point patch," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 437-440, 2015.

9. Casula, G. A., G. Montisci, P. Maxia, G. Valente, A. Fanti, and G. Mazzarella, "A low-cost dual-band CPW-fed printed LPDA for wireless communications," IEEE Antennas and Wireless Propagation Letters, Vol. 15, 1333-1336, 2015.

10. Presse, A., J.-M. Floch, and A.-C. Tarot, "Flexible VHF/UHF Vivaldi antenna for broadband applications," Progress In Electromagnetics Research Letters, Vol. 52, 37-43, 2015.
doi:10.2528/PIERL14112704

11. Lin, C.-P., C.-H. Chang, Y.-T. Cheng, and C. F. Jou, "Development of a flexible SU-8/PDMS-based antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 10, 1108-1111, 2011.

12. Rumsey, V. H., Frequency Independent Antennas, Academic Press, 2014.

13. Stutzman, W. L. and G. A. Thiele, Antenna Theory and Design, John Wiley & Sons, 2012.

14. Jacobson, H. P., C. E. Smith, and R. R. Riggs, "High-power steerable short-wave antennas," IEEE Transactions on Broadcasting, Vol. 34, No. 2, 186-192, 1988.
doi:10.1109/11.1435

15. Chu, Q.-X., X.-R. Li, and M. Ye, "High-gain printed log-periodic dipole array antenna with parasitic cell for 5G communication," IEEE Transactions on Antennas and Propagation, Vol. 65, No. 12, 6338-6344, 2017.
doi:10.1109/TAP.2017.2723916

16. Zhang, J., P. V. Orlik, Z. Sahinoglu, A. F. Molisch, and P. Kinney, "UWB systems for wireless sensor networks," Proceedings of the IEEE, Vol. 97, No. 2, 313-331, 2009.
doi:10.1109/JPROC.2008.2008786

17. Gragnani, G. L., D. D. Caviglia, and C. Montecucco, "A log-periodic antenna for long range communication within a wireless sensor network system for sea water quality monitoring," 2018 Advances in Wireless and Optical Communications (RTUWO), 161-166, 2018.
doi:10.1109/RTUWO.2018.8587911

18. Martha, G. J., E. M. Cesar, P. L. Gustavo, and S. F. Carlos, "Design and implementation of wireless sensor node in 900 MHz and 2.4 GHz bands," 2016 IEEE Colombian Conference on Communications and Computing (COLCOM), 1-5, 2016.

19. Kameoka, S., S. Isoda, A. Hashimoto, R. Ito, S. Miyamoto, G. Wada, N. Watanabe, T. Yamakami, K. Suzuki, and T. Kameoka, "A wireless sensor network for growth environment measurement and multi-band optical sensing to diagnose tree vigor," Sensors, Vol. 17, No. 5, 966, 2017.
doi:10.3390/s17050966

20. Waterhouse, R., Microstrip Patch Antennas: A Designers Guide, Springer Science & Business Media, 2013.

21. Abutarboush, H. F. and A. Shamim, "Based inkjet-printed tri-band U-slot monopole antenna for wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 1234-1237, 2012.
doi:10.1109/LAWP.2012.2223751

22. Abutarboush, H. F., H. Nasif, R. Nilavalan, and S. W. Cheung, "Multiband and wideband monopole antenna for GSM900 and other wireless applications," IEEE Antennas and Wireless Propagation Letters, Vol. 11, 539-542, 2012.
doi:10.1109/LAWP.2012.2198429

23. Casula, G. A., P. Maxia, G. Montisci, G. Mazzarella, and F. Gaudiomonte, "A printed LPDA fed by a coplanar waveguide for broadband applications," IEEE Antennas and Wireless Propagation Letters, Vol. 12, 1232-1235, 2013.
doi:10.1109/LAWP.2013.2283088

24. Anim, K. and Y.-B. Jung, "Shortened log-periodic dipole antenna using printed dual-band dipole elements," IEEE Transactions on Antennas and Propagation, Vol. 66, No. 12, 6762-6771, 2018.
doi:10.1109/TAP.2018.2874710

25. Hsu, H.-T. and T.-J. Huang, "A koch-shaped log-periodic dipole array (LPDA) antenna for universal ultra-high-frequency (UHF) radio frequency identification (RFID) handheld reader," IEEE Transactions on Antennas and Propagation, Vol. 61, No. 9, 4852-4856, 2013.
doi:10.1109/TAP.2013.2264451

26. Bishop, N. A., J. Miller, D. Zeppettella, W. Baron, J. Tuss, and M. Ali, "A broadband high-gain bi-layer LPDA for UHF conformal load-bearing antenna structures (CLASs) applications," IEEE Transactions on Antennas and Propagation, Vol. 63, No. 5, 2359-2364, 2015.
doi:10.1109/TAP.2015.2409866

27. Chang, L., S. He, J. Q. Zhang, and D. Li, "A compact dielectric-loaded log-periodic dipole array (LPDA) antenna," IEEE Antennas and Wireless Propagation Letters, Vol. 16, 2759-2762, 2017.
doi:10.1109/LAWP.2017.2744983

28. Anagnostou, D. E., J. Papapolymerou, M. M. Tentzeris, and C. G. Christodoulou, "A printed log-periodic koch-dipole array (LPKDA)," IEEE Antennas and Wireless Propagation Letters, Vol. 7, 456-460, 2008.
doi:10.1109/LAWP.2008.2001765

29. Gheethan, A. A. and D. E. Anagnostou, "Reduced size planar log-periodic dipole arrays (LPDAS) using rectangular meander line elements," 2008 IEEE Antennas and Propagation Society International Symposium, 1-4, IEEE, 2008.

30. Yagyu, H., S. Ifuku, and M. Nogi, "Acetylation of optically transparent cellulose nanopaper for high thermal and moisture resistance in a flexible device substrate," Flexible and Printed Electronics, Vol. 2, No. 1, 014003, 2017.
doi:10.1088/2058-8585/aa60f4

31. Carrel, R., "The design of log-periodic dipole antennas," 1958 IRE International Convention Record, Vol. 9, 61-75, IEEE, 1966.

32. Balanis, C. A., Antenna Theory: Analysis and Design, John Wiley & Sons, 2016.

33. Wadell, B. C., "Transmission Line Design Handbook," Artech House, 1991.

34. Waterhouse, R., Printed Antennas for Wireless Communications, Vol. 19, John Wiley & Sons, 2008.

35. Chang, T.-N. and Y.-L. Chan, "Antenna with two folded strips coupled to a T-shaped monopole," Progress In Electromagnetics Research M, Vol. 60, 197-207, 2017.
doi:10.2528/PIERM17082102