Vol. 98
Latest Volume
All Volumes
PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2020-11-18
Applicability of Transient Electromagnetic Fast Forward Modeling Algorithm with Small Loop
By
Progress In Electromagnetics Research M, Vol. 98, 159-169, 2020
Abstract
In the forward modeling of the transient electromagnetic (TEM) method, a frequency-domain solution is usually obtained first, and the solution in the time domain is then calculated by a frequency-time transformation. At present, the three main fast frequency-time transformation methods are the Guptasarma algorithm, the sine and cosine numerical filtering algorithms, and the Gaver-Stehfest (G-S) algorithm. In recent years, with the increasing demand for fine detection at shallow depths, the small-loop TEM method has undergone rapid development. It is therefore important to evaluate whether the traditional forward modeling approaches can be directly applied to the small-loop method. In this paper, the principles of the three forward modeling methods and their limitations when being applied to the small-loop TEM method are discussed. Through a comparison with the analytical solution for a uniform half-space, we demonstrate that the accuracy of forward numerical calculation is affected by loop size and earth resistivity. When the Guptasarma, G-S, and cosine numerical filtering algorithms are used for small-loop TEM forward calculation, the overall calculation error becomes non-negligible, whereas the sine numerical filtering algorithm retains a high calculation accuracy. By studying the response of the frequency-domain solution, we analyze the cause of the error in the forward calculation. Generally, the sine numerical filtering algorithm is the most suitable method for fast and high-precision small-loop TEM forward modeling. The results obtained here should provide a foundation for high-precision forward modeling and inversion of the small-loop TEM method.
Citation
Jian Chen Fuxue Yan Yishu Sun Yang Zhang , "Applicability of Transient Electromagnetic Fast Forward Modeling Algorithm with Small Loop," Progress In Electromagnetics Research M, Vol. 98, 159-169, 2020.
doi:10.2528/PIERM20071602
http://www.jpier.org/PIERM/pier.php?paper=20071602
References

1. Auken, E., T. Boesen, and A. V. Christiansen, "A review of airborne electromagnetic methods with focus on geotechnical and hydrological applications from 2007 to 2017," Advances in Geophysics, Vol. 58, 47-93, 2017.
doi:10.1016/bs.agph.2017.10.002

2. Nabighian, M. N., "Quasi-static transient response of a conducting half-space: An approximate representation," Geophysics, Vol. 44, No. 10, 1700, 1979.
doi:10.1190/1.1440931

3. Ali, M. T., E. Slob, and W. Mulder, "Quasi-analytical method for frequency-to-time conversion in CSEM applications," Geophysics, Vol. 77, No. 5, 357-363, 2012.
doi:10.1190/geo2011-0432.1

4. Knight, J. H. and A. P. Raiche, "Transient electromagnetic calculations using the Gaver Stehfest inverse Laplace transform method," Geophysics, Vol. 47, No. 1, 47-50, 1982.
doi:10.1190/1.1441280

5. Raiche, A. P., "Transient electromagnetic field computations for polygonal loops on layered earths," Geophysics, Vol. 52, No. 6, 785-793, 1987.
doi:10.1190/1.1442345

6. Luo, Y. Z. and Y. J. Chang, "A rapid algorithm for G-S transform," Chinese Journal of Geophysics, Vol. 43, No. 5, 724-730, 2000.
doi:10.1002/cjg2.87

7. Li, F. P. and H. Y. Yang, "Comparison of several frequency time transformation methods for TEM forward modeling," Geophysical and Geochemical Exploration, Vol. 40, No. 4, 743-749, 2016.

8. Kaufman, A. A. and G. V. Keller, Frequency and Transient Soundings (in Chinese), Wang J Translate Beijing, Ecological Publishing House, 1987.

9. Li, H., Z. Q. Zhu, and S. H. Zeng, "Progress of forward computation in transient electromagnetic method," Progress in Geophysics (in Chinese), Vol. 27, No. 4, 1393-1400, 2012.

10. Guptasarma, D., "Computation of the time-domain response of a polarizable ground," Geophysics, Vol. 47, No. 1, 1574-1576, 1982.
doi:10.1190/1.1441307

11. Ruan, B. Y., "Application of Guptasarma algorithm m transient electromagnetic method forward calculation," Journal of Guilin Institute of Technology (in Chinese), Vol. 16, No. 2, 167-170, 1996.

12. Metwaly, M., G. El-Qady, and U. Massoud, "Integrated geoelectrical survey for groundwater and shallow subsurface evaluation: Case study at Siliyin spring, El-Fayoum, Egypt," International Journal of Earth Ences, Vol. 99, No. 6, 1427-1436, 2010.

13. Chang, J., B. Su, R. Malekian, and X. J. Xing, "Detection of water-filled mining goaf using mining transient electromagnetic method," IEEE Transactions on Industrial Informatics, Vol. 16, No. 5, 2977-2984, 2020.
doi:10.1109/TII.2019.2901856

14. Auken, E., N. Foged, J. J. Lassen, K. V. T. Lassen, P. K. Maurya, S. M. Dath, and T. T. Eiskjar, "tTEM — A towed transient electromagnetic system for detailed 3D imaging of the top 70m of the subsurface," Geophysics, Vol. 84, No. 1, 13-22, 2019.
doi:10.1190/geo2018-0355.1

15. Niu, Z. L., The Theory of Time-Domain Electromagnetic Method (in Chinese), Central South University Press, Changsha, 2007.

16. Guptasarma, D. and B. Singh, "New digital linear filters for Hankel J0 and J1 transforms," Geophysical Prospecting, Vol. 45, No. 5, 745-762, 1997.
doi:10.1046/j.1365-2478.1997.500292.x

17. Li, J. H., C. G. Farquharson, and X. Hu, "Three effective inverse Laplace transform algorithms for computing time-domain electromagnetic responses," Geophysics, Vol. 81, No. 2, 113-128, 2016.
doi:10.1190/geo2015-0174.1

18. Wang, H. J., "Digital filter algorithm of the sine and cosine transform," Chinese Journal of Engineering Geophysics (in Chinese), Vol. 1, No. 4, 329-335, 2004.

19. Raab, P. and F. Frishknecht, "Desktop computer processing of coincident and central loop time domain electromagnetic data," U.S. Geological Survey, 83-240, 1983.

20. Newman, G. A., G. W. Hohmann, and W. L. Anderson, Geophysics, Vol. 51, No. 8, 1608-1627, 1986.
doi:10.1190/1.1442212

21. Everett, M. E., "Transient electromagnetic response of a loop source over a rough geological medium," Geophysical Journal International, Vol. 177, No. 2, 421-429, 2009.
doi:10.1111/j.1365-246X.2008.04011.x