Vol. 100
Latest Volume
All Volumes
PIERM 115 [2023] PIERM 114 [2022] PIERM 113 [2022] PIERM 112 [2022] PIERM 111 [2022] PIERM 110 [2022] PIERM 109 [2022] PIERM 108 [2022] PIERM 107 [2022] PIERM 106 [2021] PIERM 105 [2021] PIERM 104 [2021] PIERM 103 [2021] PIERM 102 [2021] PIERM 101 [2021] PIERM 100 [2021] PIERM 99 [2021] PIERM 98 [2020] PIERM 97 [2020] PIERM 96 [2020] PIERM 95 [2020] PIERM 94 [2020] PIERM 93 [2020] PIERM 92 [2020] PIERM 91 [2020] PIERM 90 [2020] PIERM 89 [2020] PIERM 88 [2020] PIERM 87 [2019] PIERM 86 [2019] PIERM 85 [2019] PIERM 84 [2019] PIERM 83 [2019] PIERM 82 [2019] PIERM 81 [2019] PIERM 80 [2019] PIERM 79 [2019] PIERM 78 [2019] PIERM 77 [2019] PIERM 76 [2018] PIERM 75 [2018] PIERM 74 [2018] PIERM 73 [2018] PIERM 72 [2018] PIERM 71 [2018] PIERM 70 [2018] PIERM 69 [2018] PIERM 68 [2018] PIERM 67 [2018] PIERM 66 [2018] PIERM 65 [2018] PIERM 64 [2018] PIERM 63 [2018] PIERM 62 [2017] PIERM 61 [2017] PIERM 60 [2017] PIERM 59 [2017] PIERM 58 [2017] PIERM 57 [2017] PIERM 56 [2017] PIERM 55 [2017] PIERM 54 [2017] PIERM 53 [2017] PIERM 52 [2016] PIERM 51 [2016] PIERM 50 [2016] PIERM 49 [2016] PIERM 48 [2016] PIERM 47 [2016] PIERM 46 [2016] PIERM 45 [2016] PIERM 44 [2015] PIERM 43 [2015] PIERM 42 [2015] PIERM 41 [2015] PIERM 40 [2014] PIERM 39 [2014] PIERM 38 [2014] PIERM 37 [2014] PIERM 36 [2014] PIERM 35 [2014] PIERM 34 [2014] PIERM 33 [2013] PIERM 32 [2013] PIERM 31 [2013] PIERM 30 [2013] PIERM 29 [2013] PIERM 28 [2013] PIERM 27 [2012] PIERM 26 [2012] PIERM 25 [2012] PIERM 24 [2012] PIERM 23 [2012] PIERM 22 [2012] PIERM 21 [2011] PIERM 20 [2011] PIERM 19 [2011] PIERM 18 [2011] PIERM 17 [2011] PIERM 16 [2011] PIERM 14 [2010] PIERM 13 [2010] PIERM 12 [2010] PIERM 11 [2010] PIERM 10 [2009] PIERM 9 [2009] PIERM 8 [2009] PIERM 7 [2009] PIERM 6 [2009] PIERM 5 [2008] PIERM 4 [2008] PIERM 3 [2008] PIERM 2 [2008] PIERM 1 [2008]
2021-01-07
Inductive Multi-Frequency Diversity Using Split Resonant Frequency
By
Progress In Electromagnetics Research M, Vol. 100, 81-91, 2021
Abstract
Although wireless power transfer systems suffer from splitting frequency conditions under strong coupling, this could create an opportunity for initiating other frequencies for power and data transfer. This paper introduces a model of an inductive transmitter containing a transmitter and many internal resonators to diversify the magnetic link to the receiver. Using the proposed architecture and solution, the efficiency and received power can be increased, and it also supports multiple frequency diversity.
Citation
Hoang Nguyen Johnson I. Agbinya , "Inductive Multi-Frequency Diversity Using Split Resonant Frequency," Progress In Electromagnetics Research M, Vol. 100, 81-91, 2021.
doi:10.2528/PIERM20071702
http://www.jpier.org/PIERM/pier.php?paper=20071702
References

1. Kurs, A., A. Karalis, R. Moffatt, J. D. Joannopoulos, P. Fisher, and M. Soljacic, "Wireless power transfer via strongly coupled magnetic resonances," Science, Vol. 317, No. 5834, 83-86, 2007.
doi:10.1126/science.1143254

2. Cannon, B. L., J. F. Hoburg, D. D. Stancil, and S. C. Goldstein, "Magnetic resonant coupling as a potential means for wireless power transfer to multiple small receivers," IEEE Transactions on Power Electronics, Vol. 24, No. 7, 1819-1825, July 2009.
doi:10.1109/TPEL.2009.2017195

3. Niu, W., J. Chu, W. Gu, and A. Shen, "Exact analysis of frequency splitting phenomena of contactless power transfer systems," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 60, No. 6, 1670-1677, June 2013.
doi:10.1109/TCSI.2012.2221172

4. Niu, W. Q., W. Gu, J. X. Chu, and A. D. Shen, "Coupled-mode analysis of frequency splitting phenomena in cpt systems," Electronics Letters, Vol. 48, No. 12, 723-724, June 2012.
doi:10.1049/el.2012.0953

5. Nguyen, H. and J. I. Agbinya, "Splitting frequency diversity in wireless power transmission," IEEE Transactions on Power Electronics, Vol. 30, No. 11, 6088-6096, November 2015.
doi:10.1109/TPEL.2015.2424312

6. Agbinya, J. I., "Recursive frequency allocation scheme in wireless power transfer and magnetic induction communication systems," Wireless Personal Communications, Vol. 98, No. 1, 213-223, January 2018.
doi:10.1007/s11277-017-4864-1

7. Agbinya, J. I. and H. Nguyen, "Principles and applications of frequency splitting in inductive communications and wireless power transfer systems," Wireless Personal Communications, April 2019.
doi:10.1007/s11277-017-4864-1

8. Kurs, A., R. J. Moffatt, and M. Soljacic, "Simultaneous mid-range power transfer to multiple devices," Applied Physics Letters, Vol. 96, 044102, 2010.
doi:10.1063/1.3284651

9. Ishizaki, M. and A. Kurokawa, "Power transfer system combining wireless resonators and wired three-coil repeater," 2019 IEEE International Symposium on Circuits and Systems (ISCAS), 1-4, May 2019.

10. Machnoor, M., E. S. G. Rodríguez, P. Kosta, J. Stang, and G. Lazzi, "Analysis and design of a 3-coil wireless power transmission system for biomedical applications," IEEE Transactions on Antennas and Propagation, 1, 2018.

11. Duong, T. P. and J. Lee, "Experimental results of high-efficiency resonant coupling wireless power transfer using a variable coupling method," IEEE Microwave and Wireless Components Letters, Vol. 21, No. 8, 442-444, August 2011.
doi:10.1109/LMWC.2011.2160163

12. Sample, A. P., B. H. Waters, S. T. Wisdom, and J. R. Smith, "Enabling seamless wireless power delivery in dynamic environments," Proceedings of the IEEE, Vol. 101, No. 6, 1343-1358, June 2013.
doi:10.1109/JPROC.2013.2252453

13. Lee, C. K., W. X. Zhong, and S. Y. R. Hui, "Effects of magnetic coupling of nonadjacent resonators on wireless power domino-resonator systems," IEEE Transactions on Power Electronics, Vol. 27, No. 4, 1905-1916, April 2012.
doi:10.1109/TPEL.2011.2169460

14. Dionigi, M. and M. Mongiardo, "Multi band resonators for wireless power tranfer and near field magnetic communications," 2012 IEEE MTT-S International Microwave Workshop Series on Innovative Wireless Power Transmission: Technologies, Systems, and Applications, 61-64, May 2012.
doi:10.1109/IMWS.2012.6215820

15. Ahn, D. and S. Hong, "Effect of coupling between multiple transmitters or multiple receivers on wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, No. 7, 2602-2613, July 2013.
doi:10.1109/TIE.2012.2196902

16. Ahn, D. and S. Hong, "A study on magnetic field repeater in wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 60, No. 1, 360-371, January 2013.
doi:10.1109/TIE.2012.2188254

17. Ahn, D. and S. Hong, "A transmitter or a receiver consisting of two strongly coupled resonators for enhanced resonant coupling in wireless power transfer," IEEE Transactions on Industrial Electronics, Vol. 61, No. 3, 1193-1203, March 2014.
doi:10.1109/TIE.2013.2257151

18. Nguyen, H., J. I. Agbinya, and J. Devlin, "Fpga-based implementation of multiple modes in near field inductive communication using frequency splitting and mimo configuration," IEEE Transactions on Circuits and Systems I: Regular Papers, Vol. 62, No. 1, 302-310, January 2015.
doi:10.1109/TCSI.2014.2359716

19. Ahn, D., M. Kiani, and M. Ghovanloo, "Enhanced wireless power transmission using strong paramagnetic response," IEEE Transactions on Magnetics, Vol. 50, No. 3, 96-103, March 2014.
doi:10.1109/TMAG.2013.2284752